CARMINAWOOD

ENGINEER'S REPORT

for

Multi-Family Development

0, 46-84 S Linden Street Town of Amherst, Erie County, New York

Prepared for

South Linden, LLC

493 Kennedy Road Cheektowaga, NY 14227

Prepared by

Carmina Wood Design

80 Silo City Row, Suite 100 Buffalo, NY 14203

Telephone: (716) 842-3165 Fax: (716) 842-0263

> September 2025 Rev. November 2025 Rev. December 2025

Table of Contents

Written Engineer's Report

Section 1 - Location & Description

Section 2 - Water Service

Section 3 - Sanitary Sewer Service

Section 4 - Storm Sewer Service

Appendices

Appendix A Sanitary Sewer and Water Demand Calculations

Appendix B Storm Sewer System Drainage Calculations

Existing Runoff

Proposed Runoff

o Green Infrastructure & Water Quality Calculations

Appendix C Storm Pipe Sizing Calculations

Section 1 - Location & Description

This project is a development of a 2.4 acre site located of the vacant land on South Linden Street in the Town of Amherst. Construction will consist of two multi-family buildings totaling 28 units, with detached garage buildings, associated utility, lighting and landscaping improvements. Currently the site is undeveloped consisting of mostly wooded areas. The proposed site development area to be disturbed for this project is approximately 2.25 acres when construction is completed.

Section 2 - Water Service

Water service for the multi-family buildings will be tapped off the existing 8" ECWA water main on the north side of Wehrle Drive. The service will be a 6" Class 52 DI combined water service, then split into a 6" fire service and a 4" domestic service at the ROW line. Both services will continue into a proposed insulated enclosure and have a meter and RPZ. Proper heat and lighting will be provided in the enclosure, drainage due to testing or failure of the RPZ will be to the exterior grade. The owner will be responsible for keeping the drainage ports clear of snow and debris. Water inside the multi-family buildings will be used for typical domestic uses.

The multi-family buildings are to be sprinklered, interior fire protection system to be designed by others. One private hydrant will be installed on site to ensure fire hose coverage not exceeding 600'.

Domestic Summary:

Peak Operating Demand: 14.52 gpm

Water Main:
Static Pressure:
Friction Loss:

8" on Wehrle Drive
52 psi (ECWA)
0.0 psi

Loss through meter/RPZ: 13.0 psi Elevation Loss: 0.0 psi Pressure after RPZ: 39.0 psi

Repairs to all devices will be made during off hours, dual backflow preventers are not required. The site is not located in a 100-year flood plain. Disinfection of the water service following installation will be continuous feed, according to AWWA C-651, latest revision.

Section 3 - Sanitary Sewer Service

The proposed multi-family buildings will each have a 6" SDR-35 PVC sanitary lateral at 1.0% minimum slope. These laterals will connect and ultimately connect to the nearest public sanitary sewer manhole on McIntire Road.

Design Parameters

1-bedroom townhouse: 110 gal/day/units x 12 units = 1,320 gpd 2-bedroom townhouse: 220 gal/day/units x12 units = 2,640 gpd 3-bedroom townhouse: 330 gal/day/units x 4 units = 1,320 gpd

Total = 5,280 gpd

5,280 gpd * 4.31 = 22,756 gpd *use peaking factor of 4.31

The hydraulic loading rate is per "Design Standards for Intermediate Sized Wastewater Treatment Systems" 2014, NYSDEC.

Section 4 - Storm Sewer Service

The existing site currently sheet drains north to the existing ditches on site which ultimately discharge to McIntire Road.

Stormwater runoff collected onsite as a result of the proposed development will be routed through the proposed storm sewer system consisting of a bioretention area and dry detention system connected by a series of catch basins, yard drains and smooth interior HDPE pipe. The bioretention area on site is designed to provide 100% of the required runoff reduction volume (RRv). The soils in the vicinity of the bioretention area are mainly USDA hydrologic group 'D' and therefore the system will be installed with underdrains per NYSDEC requirements. The bioretention area will consist of 6" perforated HDPE underdrains in 8" of drainage gravel, followed by filter fabric and then finally 18" minimum of planting soil. Overflow yard drains will be installed to allow 6" maximum ponding for RRv treatment. Stormwater detention is required per NYSDEC standards and specifications. The dry detention field was designed to allow for stormwater to be temporarily stored and discharged at a controlled rate. A 4" orifice and 10" outlet control pipe along will be provided as the outlet control device for the dry detention basin. Discharge from the outlet pipe will flow through a proposed water quality treatment unit prior to outleting to the existing Town of Amherst storm sewer system on McIntire Road.

Runoff reduction volume (RRv), water quality volume (WQv) and stormwater volume attenuation for the site is designed in accordance with Chapter 4 of the NYSDEC Stormwater design manual. The bioretention area is provided as a "green infrastructure" practice to provide runoff reduction to meet the Chapter 4 requirements for the currently undeveloped areas. A Water Quality Treatment unit is proposed to satisfy the remaining NYSDEC water quality volume (WQv) treatment requirements. Runoff from the site was looked at as a whole for the calculation of volume attenuation requirements. The existing site has a pre-development total of 0.05 acres of impervious cover. The amount of impervious cover post-development is 1.05 acres. The proposed dry detention basin is designed to accommodate the 1-year through 100-year storm events controlling the offsite runoff rate to less than the existing runoff rates, as well as the below stated Town stormwater runoff requirements.

Town of Amherst Requirement:

The Town of Amherst requires that the 25-year proposed storm event be attenuated with detention and that the outlet flowrate be restricted to the 10-year existing storm event. This volume of 9,332 cf is accommodated in the dry detention basin at elevation 678.44. At this elevation, the outlet discharge will be restricted to 0.65 cfs, which is less than the existing 10-year peak runoff outflow of 1.44 cfs of the overall site.

Dry Detention Basin Summary:

Top of pond = 679.00 Bottom of pond = 675.90 100-year storm storage volume = 13,554 cf @ 678.97

Water Quality Summary:

WQv req'd = 3,866 cf (0.089 ac-ft)
RRv min. req'd = 724 cf (0.017 ac-ft)
RRv provided - bioretention areas = 732 cf (0.017 ac-ft)
WQv provided - Treatment unit = 3,314 cf (0.072 ac-ft)
Total RRv + WQv provided = 724 cf + 3,314 cf = 3,866 cf (0.089 ac-ft)

Bioretention: 100% of minimum post-development Runoff Reduction volume (RRV)

Area: 1,425 sf

Bottom Elevation: 680.80 & 680.00

Detention: Comparison of the existing 1-year vs. the proposed 1-year runoff

Comparison of the existing 10-year vs. the proposed 10-year runoff Comparison of the existing 10-year vs. the proposed 25-year runoff Comparison of the existing 100-year vs. the proposed 100-year runoff

Runoff Summary:

Event	Ex. Runoff (cfs)	Pro. Runoff (cfs)*	Result (cfs)
1-year	0.43	0.39	-0.04
10-year	1.44	0.58	-0.86
25-year	2.08	0.65	-1.43
100-year	3.46	1.75	-1.71

^{*} Proposed runoff flowrate is the rate controlled by the 10" outlet pipe from the dry detention basin which ultimately discharges to the existing Town of Amherst storm sewer as shown Appendix B of this report.

Appendix A Sanitary Sewer and Water Demand Calculations

CARMINA WOOD DESIGN

80 SILO CITY, SUITE 100 BUFFALO, NEW YORK, 14203 (716) 842-3165

FAX (716) 842-0263

Project No.: 23-4154 Date: 9/22/2025

Project Name: Multi-Family Development rev. 12/15/2025
Project Address: S Linden Street Amherst, NY

Subject: Sanitary Sewer & Water Demand Calcs

Sheet: 1 of 2

110 gal/d/unit	X	12 ur			1,320	gpd) gal									
220 gal/d/unit	X	12 ur			2,640	gpd) gal									
330 gal/d/unit	X	4 ur	nits	=	1,320	gpd			*use	330) gal	ons	per	uni	t pe	er d	ay	(3-b	drm	1)
													h							1111
Total Site Sanitary Demand:				=	<u>5,280</u>	<u>gpd</u>														
nd Peak Sanitary Demand:																				
Peaking Factor based on Po													D							
Total demand:	5,280	gpd	/	100	gpcd	=	53 p	er ca	pita				D							
	Рорі	ulatior	າ (P)	=		53 pe	ople													
Peaking Factor: (18	S +√P) / (4	4 + √P)	wl	nere P is ir	1 thous	ands													
Peaking Factor =	4.31																			
		E 20/	1	A 24)) 7 E/	لمحم													
Peak Sanitary Demand	=	ე,∠გ(JX	4.31	=	22,756 0.023														
					= [0.035														
	D												D							
										- 1	1									
equired Infiltration and Inflow	Mitigatio	<u>n:</u>										, i								
	Mitigatio	<u>n:</u>																		
equired Infiltration and Inflow Peak Sanitary Flow	Mitigatio	<u>n:</u>		=	22,756	gpd	=	15.	.80 ي	gpm										
				=		gpd x 4					req'	d								
Peak Sanitary Flow 4:1 offset flow per NYSDEC re				=	15.80	x 4	=					<u>d</u>								
Peak Sanitary Flow						x 4	=					d								
Peak Sanitary Flow 4:1 offset flow per NYSDEC re	quiremen			=	15.80 \$250	x 4						t								
Peak Sanitary Flow 4:1 offset flow per NYSDEC re Mitigation Credit	quiremen			=	15.80 \$250	x 4						J								
Peak Sanitary Flow 4:1 offset flow per NYSDEC re Mitigation Credit	quiremen			=	15.80 \$250	x 4						d d								
Peak Sanitary Flow 4:1 offset flow per NYSDEC re Mitigation Credit	quiremen			=	15.80 \$250	x 4														
Peak Sanitary Flow 4:1 offset flow per NYSDEC re Mitigation Credit	quiremen			=	15.80 \$250	x 4														
Peak Sanitary Flow 4:1 offset flow per NYSDEC re Mitigation Credit	quiremen			=	15.80 \$250	x 4						ng manang								
Peak Sanitary Flow 4:1 offset flow per NYSDEC re Mitigation Credit	quiremen			=	15.80 \$250	x 4														
Peak Sanitary Flow 4:1 offset flow per NYSDEC re Mitigation Credit	quiremen			=	15.80 \$250	x 4														
Peak Sanitary Flow 4:1 offset flow per NYSDEC re Mitigation Credit	quiremen			=	15.80 \$250	x 4														
Peak Sanitary Flow 4:1 offset flow per NYSDEC re Mitigation Credit	quiremen			=	15.80 \$250	x 4														
Peak Sanitary Flow 4:1 offset flow per NYSDEC re Mitigation Credit	quiremen			=	15.80 \$250	x 4														

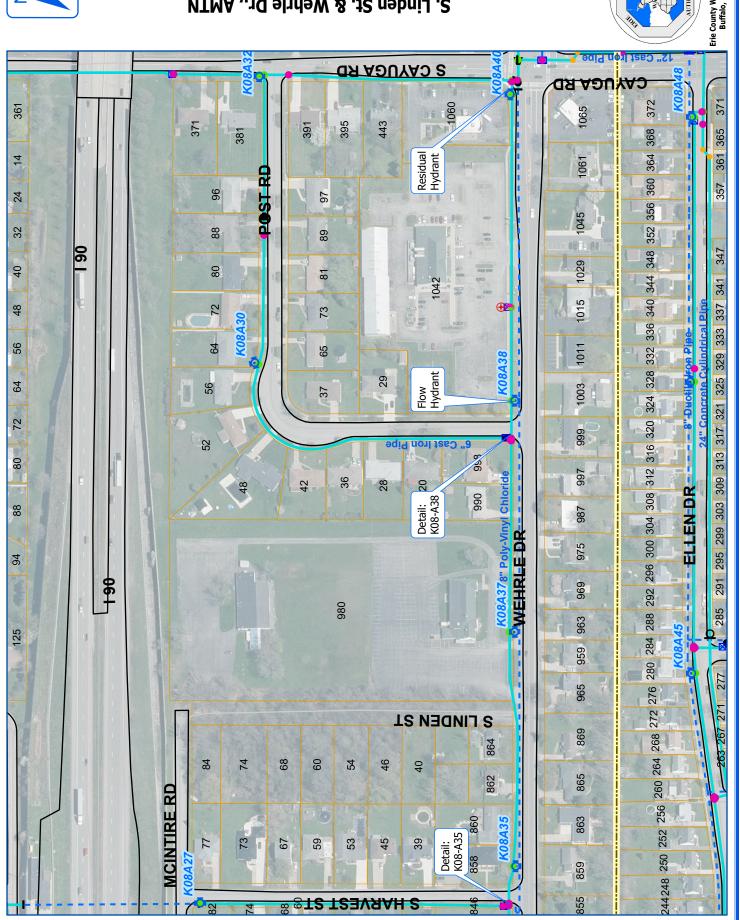
CARMINA WOOD DESIGN 80 SILO CITY ROW, SUITE 100 BUFFALO, NEW YORK, 14203 (716) 842-3165 FAX (716) 842-0263

Project No.: Project Name:

Subject:

25-4154 Multi-Family Development rev. 12/15/2025

9/22/2025


Project Address:

S Linden Street Amherst, NY Sanitary Sewer & Water Demand Calcs

Date:

Sheet: 2 of 2

Headlosses: $Q_{peak} = 14.52 \text{ gpm}$ Pipe = 6 inch Ductile Iron C = 140 Length = 100 LF (approx. distance from tap to RPZ in hot box) $H_L = \frac{10.44 \text{ L Q}^{1.85}}{C^{1.85} D^{4.866}} = \frac{10.44(100)(10.89)^{1.85}}{(140)^{1.85} (6)^{4.866}} = 0.00 \text{ ft} = 0.00 \text{ psi}$ $\Delta \text{ elev} = 0 \text{ ft} = 0.00 \text{ psi}$ Loss through meter = 1 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure = 52 psi (per ECWA) Residual Pressure Following RPZ = 52 - 13.0 = 39.0 psi (available after rpz & meter) Residual Pressure 30" above 2nd Floor $\Delta \text{ elev} = 11 \text{ ft} = 4.76 \text{ psi}$ Residual Pressure 30" above 2nd Floor = 34.2 psi	*use 1.8 peaking factor and assume a 12 hour day 5,808 gpm x 1day/12hr x 1hr/60min = 8.07 gpm 8.07 gpm x 3.0 = 14.52 gpm Q _{peak} *use peaking factor 3 per ECDOH standards Headlosses: Q _{peak} = 14.52 gpm Pipe = 6 inch Ductile Iron C = 140 Length = 100 LF (approx. distance from tap to RPZ in hot box) H _L = 10.44 L Q ^{1.85} / (1.85 peak) = 10.44(100)(10.89) *** A elev = 0 ft = 0.00 psi Loss through meter = 1 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure 30° above 2nd Floor A elev = 11 ft = 4.76 psi Residual Pressure 30° above 2nd Floor A elev = 11 ft = 4.76 psi Residual Pressure 30° above 2nd Floor A elev = 11 ft = 4.76 psi Residual Pressure 30° above 2nd Floor A elev = 11 ft = 4.76 psi Residual Pressure 30° above 2nd Floor A elev = 11 ft = 4.76 psi Residual Pressure 30° above 2nd Floor A elev = 11 ft = 4.76 psi Residual Pressure 30° above 2nd Floor A elev = 10.000 gpm Pipe = 6 inch PVC Length = 135 LF (approx. distance from RPZ to farthest hydrant) H _L = 10.44 L Q ^{1.85} / (140) ^{1.85} (6) ^{1.800} = 8.75 ft = 3.79 psi Static Pressure after RPZ = 52.0 psi (per ECWA)	Proposed Multi-Family															
Section Sect	S,808 gpm x 1day/12hr x 1hr/60min = 8.07 gpm	5,280 gpd	x 1	.1 =	5,808	gpd				*use 11	0% of	sewag	e der	nand			
Section Sect	S,808 gpm x 1day/12hr x 1hr/60min = 8.07 gpm	*use 1.8 neaking	factor and	ł assume a	ı 12 hour d	av											
8.07 gpm x 3.0 = 14.52 gpm Q _{peak}	Headlosses:																
Headlosses:	Headlosses:		5,808 gp	om x	1day/12l	nr x	1hr/6	0min	=	8.07	gpm						
Q _{peok} = 14.52 gpm	Q _{peak} = 14.52 gpm Pipe		8.07 gr	om x	3.0 =		14.52 gpn	ո Q _{pe}	eak	*use pe	aking	factor	3 pe	r ECD	OH s	tano	lards
Pipe = 6 inch Ductile Iron C = 140 Length = 10.0 LE (approx. distance from tap to RPZ in hot box) H _L = 10.4 LQ ^{1.85} (approx. distance from tap to RPZ in hot box) A clev = 0 ft = 0.00 psi A clev = 0 ft = 0.00 psi Loss through RPZ = 12 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure = 52 psi (per ECWA) Residual Pressure S0" above 2nd Floor A clev = 52 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Aclev = 1,000 gpd Headlosses: Q _{peak} = 1000 gpm Pipe = 6 inch PVC C = 140 Length = 13 ft = 10.44 (135)(1000) ^{1.85} (140) ^{1.85} (140) ^{1.85} (140) ^{1.85} (140) ^{1.85} (6) ^{1.866} =<	Pipe	Headlosses:															
Pipe	Pipe												Ě				
H _L = \frac{10.44 L Q^{1.85}}{C^{1.85} D^{3.866}} = \frac{10.44(100)(10.89)^{1.85}}{(140)^{1.85} (6)^{4.866}} = 0.00 \text{ ft} = 0.00 \text{ psi} \\ Loss through meter = 1 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure = 52 psi Residual Pressure Following RPZ = 52 - 13.0 = 39.0 psi Residual Pressure 30" above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 1.000 psi Residual Pressure 30" above 2nd Floor = 1.000 psi Residual Pressure 30" above 2nd Floor = 1.000 psi Loss through meter = 1 psi Residual Pressure 30" above 2nd Floor = 1.000 psi Residual Pressure 30" above 2nd Floor = 1.00	H _L = 10.44 L Q ^{1.85} / C ^{1.85} D ^{4.860} = 10.44(100)(10.89) ^{1.85} / (140) ^{1.85} (6) ^{4.866} = 0.00 ft = 0.00 psi Loss through meter = 1 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure = 52 psi (per ECWA) Residual Pressure S0° above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30° above 2nd Floor = 34.2 psi ter Demand Calculations (fire): Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{creak} = 1000 gpm Pipe = 6 inch PVC C = 140 Length = 135 LF (approx. distance from RPZ to farthest hydrant) H _L = 10.44(100)(10.89) ^{1.85} / (10.49) (10.90)(1.85) / (10.49) (10.90)(1.85) / (10.49) (10.90)(1.85) / (140) ^{1.85} (10.44(135)(1000) ^{1.85} = 8.75 ft = 3.79 psi	Pipe =	6 inch	Ductile Iro	n	C =	= 140										
H _L = \frac{10.44 L Q^{1.85}}{C^{1.85} D^{1.866}} = \frac{10.44(100)(10.89)^{1.85}}{(140)^{1.85} (6)^{4.866}} = 0.00 \text{ ft} = 0.00 \text{ psi} \\ Loss through meter = 1 psi \\ Loss through RPZ = 12 psi \\ Total Losses = 13.0 psi \\ Static Pressure = 52 psi \\ Residual Pressure 30" above 2nd Floor Δ elev = 11 ft = 4.76 psi \\ Residual Pressure 30" above 2nd Floor = 34.2 psi \\ Residual Pressure 30" above 2nd Floor = 34.2 psi \\ Residual Pressure 30" above 2nd Floor = 10.00 psi \\ Residual Pressure 3	H _L = 10.44 L Q ^{1.85} / C ^{1.85} D ^{4.860} = 10.44(100)(10.89) ^{1.35} / (140) ^{1.85} (6) ^{4.866} = 0.00 ft = 0.00 psi Loss through meter = 1 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure = 52 psi (per ECWA) Residual Pressure 30° above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30° above 2nd Floor = 34.2 psi ter Demand Calculations (fire): Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{creak} = 1000 gpm Pipe = 6 inch PVC C = 140 Length = 135 LF (approx. distance from RPZ to farthest hydrant) H _L = 10.44(12).85	Length = 10)O LF (apr	orox. dista	nce from t	ap to R	PZ in hot	box)	ā								
Δ elev = 0 ft = 0.00 psi Loss through meter = 1 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure = 52 psi (per ECWA) Residual Pressure Following RPZ = 52 - 13.0 = 39.0 psi (available after rpz & meter) Residual Pressure 30" above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 41 ft = 1.30 psi Static Pressure after RPZ = 52.0 psi (per ECWA)	Δ elev = 0 ft = 0.00 psi Loss through meter = 1 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure = 52 psi (per ECWA) Residual Pressure S0" above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi ter Demand Calculations (fire): Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 1000 gpm Pipe = 6 inch PVC C = 140 Length = 135 LF (approx. distance from RPZ to farthest hydrant) H _L = 10.44 L Q ^{1.85} / C ^{1.85} D ^{2.866} = 10.44(135)(1000) ^{1.85} / (140) ^{1.85} (6) ^{4.866} = 8.75 ft = 3.79 psi	10.44 L O ¹	.85	10.44(10	0)(10.89) ^{1.8}	5											
Δ elev = 0 ft = 0.00 psi Loss through meter = 1 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure = 52 psi (per ECWA) Residual Pressure Following RPZ = 52 - 13.0 = 39.0 psi (available after rpz & meter) Residual Pressure 30" above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 30" above 2nd Floor = 14.2 psi Residual Pressure 41 ft = 1.30 psi Static Pressure after RPZ = 52.0 psi (per ECWA)	Δ elev = 0 ft = 0.00 psi Loss through meter = 1 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure = 52 psi (per ECWA) Residual Pressure S0" above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi ter Demand Calculations (fire): Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 1000 gpm Pipe = 6 inch PVC C = 140 Length = 135 LF (approx. distance from RPZ to farthest hydrant) H _L = 10.44 L Q ^{1.85} / C ^{1.85} D ^{2.866} = 10.44(135)(1000) ^{1.85} / (140) ^{1.85} (6) ^{4.866} = 8.75 ft = 3.79 psi	$H_L = \frac{1.85 D^{4.86}}{C^{1.85} D^{4.86}}$	6 =	(140)1	.85 (6)4.866	=	0.00	ft =	0.0	0 psi							
Loss through meter = 1 psi Loss through RPZ = 12 psi Total Losses = 13.0 psi Static Pressure = 52 psi (per ECWA) Residual Pressure Following RPZ = 52 - 13.0 = 39.0 psi (available after rpz & meter) Residual Pressure 30" above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 10.00 psi	Loss through meter 1 psi 12 psi 13.0 psi 15 total Losses	Λeley - Oft -	- 0.00	nci (140)	(0)												
Total Losses 13.0 psi Static Pressure 52 psi (per ECWA)	Total Losses																
Total Losses 13.0 psi Static Pressure 52 psi (per ECWA)	Total Losses	Loss through RP7	= 17	nsi												ļ	
Static Pressure = 52 psi (per ECWA) Residual Pressure Following RPZ = 52 - 13.0 = 39.0 psi (available after rpz & meter) Residual Pressure 30" above 2nd Floor Δ elev 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 1000 gpm Pipe = 6 inch PVC C = 140 Length = 135 LF (approx. distance from RPZ to farthest hydrant) H _L = 10.44 L Q ^{1.85} C ^{1.85}	Static Pressure = 52 psi (per ECWA)	Total Loss	-S =	13.0 nsi					ļ							ļ	
Residual Pressure Following RPZ = 52 - 13.0 = 39.0 psi (available after rpz & meter) Residual Pressure 30" above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 1000 gpm Pipe = 6 inch PVC Length = 135 LF (approx. distance from RPZ to farthest hydrant) H _L = 10.44 L Q ^{1.85} C ^{1.85} D ^{4.866} = 10.44(135)(1000) ^{1.85} (140) ^{1.85} (6) ^{4.866} = 8.75 ft = 3.79 psi Static Pressure after RPZ = 52.0 psi (per ECWA)	Residual Pressure 30" above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 1.000 psi Residual Pressure 30" above 2nd				(per F(-WA)											
Residual Pressure 30" above 2nd Floor $\Delta \text{ elev} = 11 \text{ ft} = 4.76 \text{ psi}$ Residual Pressure 30" above 2nd Floor = 34.2 psi Proposed Multi-Family $Q = 1,000 \text{ gpd}$ Headlosses: $Q_{\text{peak}} = 1000 \text{ gpm}$ Pipe = 6 inch PVC C C = 140 Length = 135 LF (approx. distance from RPZ to farthest hydrant) $H_{\text{L}} = \frac{10.44 \text{ L } 0^{1.85}}{C^{1.85} D^{4.866}} = \frac{10.44(135)(1000)^{1.85}}{(140)^{1.85} (6)^{4.866}} = 8.75 \text{ ft} = 3.79 \text{ psi}$ Static Pressure after RPZ = 52.0 psi (per ECWA)	Residual Pressure 30" above 2nd Floor Δ elev = 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Residual Pressure 30" above 2nd Floor = 4.20 psi Residual Pressure 30" above 2nd Floor = 4.40 psi Residual Pressure 3						i = i	39.0 psi	(av	ailable	after	rpz & r	nete	r)	₹		
Δ elev = 11 ft = 4.76 psi Residual Pressure 30" above 2nd Floor = 34.2 psi Assign Proposed Multi-Family	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						···										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 1000 gpm Pipe = 6 inch PVC C = 140 Length = 135 LF (approx. distance from RPZ to farthest hydrant) $H_L = \frac{10.44 L Q^{1.85}}{C^{1.85} D^{4.866}} = \frac{10.44(135)(1000)^{1.85}}{(140)^{1.85} (6)^{4.866}} = 8.75 \text{ ft} = 3.79 \text{ psi}$ Static Pressure after RPZ = 52.0 psi (per ECWA)	Residual Flessule 30	above zi	iu i tooi	: - :	.)4.7											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 1000 gpm Pipe = 6 inch PVC C = 140 Length = 135 LF (approx. distance from RPZ to farthest hydrant) H _L = $\frac{10.44 \text{ L Q}^{1.85}}{\text{C}^{1.85} \text{ D}^{4.866}} = \frac{10.44(135)(1000)^{1.85}}{(140)^{1.85} (6)^{4.866}} = 8.75 \text{ ft} = 3.79 \text{ psi}$ Δ elev = -3 ft = -1.30 psi Static Pressure after RPZ = 52.0 psi (per ECWA)						рзі										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ater Demand Calculation:	s (fire):				P31										
Headlosses:	Headlosses:		s (fire):														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		s (fire):														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Proposed Multi-Family	s (fire):														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Proposed Multi-Family Q = 1,000 gpd	s (fire):														
	Length = 135 LF (approx. distance from RPZ to farthest hydrant) $H_L = \frac{10.44 \text{ L Q}^{1.85}}{\text{C}^{1.85} \text{ D}^{4.866}} = \frac{10.44(135)(1000)^{1.85}}{(140)^{1.85} (6)^{4.866}} = 8.75 \text{ ft} = 3.79 \text{ psi}$ $\Delta \text{ elev} = -3 \text{ ft} = -1.30 \text{ psi}$ $\text{Static Pressure after RPZ} = 52.0 \text{ psi (per ECWA)}$	Proposed Multi-Family Q = 1,000 gpd Headlosses:															
$H_{L} = \frac{10.44 \text{ L Q}^{1.85}}{C^{1.85}} \frac{10.44(135)(1000)^{1.85}}{(140)^{1.85}(6)^{4.866}} = 8.75 \text{ ft } = 3.79 \text{ psl}$ $\Delta \text{ elev} = -3 \text{ ft } = -1.30 \text{ psl}$ $Static Pressure after RPZ = 52.0 \text{ psl (per ECWA)}$	$H_{L} = \frac{10.44 L Q^{1.85}}{C^{1.85} D^{4.866}} = \frac{10.44(135)(1000)^{1.85}}{(140)^{1.85} (6)^{4.866}} = 8.75 \text{ ft} = 3.79 \text{ psi}$ $\Delta \text{elev} = -3 \text{ ft} = -1.30 \text{ psi}$ $\text{Static Pressure after RPZ} = 52.0 \text{ psi (per ECWA)}$	Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 100	00 gpm	PVC													
Δ elev = -3 ft = -1.30 psi Static Pressure after RPZ = 52.0 psi (per ECWA)	Δ elev = -3 ft = -1.30 psi Static Pressure after RPZ = 52.0 psi (per ECWA)	Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 100 Pipe =	00 gpm		nce from R	C =	140	drant									
Δ elev = -3 ft = -1.30 psi Static Pressure after RPZ = 52.0 psi (per ECWA)	Δ elev = -3 ft = -1.30 psi Static Pressure after RPZ = 52.0 psi (per ECWA)	Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 100 Pipe = 13	00 gpm 6 inch 35 LF (app	orox. dista	nce from R	C =	= 140 arthest hy										
Static Pressure after RPZ = 52.0 psi (per ECWA)	Static Pressure after RPZ = 52.0 psi (per ECWA)	Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 100 Pipe = 13	00 gpm 6 inch 35 LF (app	orox. dista	nce from F 55)(1000)1.8:5 (6)4.866	C =	= 140 arthest hy		3.79	psi							
Static Pressure after RPZ = 52.0 psi (per ECWA)	Static Pressure after RPZ = 52.0 psi (per ECWA)	Proposed Multi-Family Q = 1,000 gpd Headlosses: Q _{peak} = 100 Pipe = 13	00 gpm 6 inch 35 LF (app	orox. dista	nce from F 85)(1000) ^{1.8:}	C =	= 140 arthest hy		3.79	psi							
		$\begin{array}{c c} Proposed \ Multi-Family \\ Q = 1,000 \ gpd \\ \\ Headlosses: \\ Q_{peak} = 100 \\ \\ Pipe = \\ Length = 13 \\ \\ H_L = \frac{10.44 \ L \ Q^1}{C^{1.85} \ p^{4.86}} \end{array}$	00 gpm 6 inch 35 LF (app .85	0rox. dista 10.44(13 (140)	nce from F 55)(1000) ^{1.83} .85 (6) ^{4.866}	C =	= 140 arthest hy		3.79	psi							
		$\begin{array}{c c} Proposed \ Multi-Family \\ Q = 1,000 \ gpd \\ \\ Headlosses: \\ Q_{peak} = 100 \\ \\ Pipe = \\ Length = 13 \\ \\ H_L = \frac{10.44 \ L \ Q^1}{C^{1.85} \ p^{4.86}} \end{array}$	00 gpm 6 inch 35 LF (app .85	0rox. dista 10.44(13 (140)	nce from F 35)(1000) ^{1.83} .85 (6) ^{4.866}	C =	= 140 arthest hy		3.79	pSi							
		$\begin{array}{c c} Proposed \ Multi-Family \\ Q = 1,000 \ gpd \\ \\ Headlosses: \\ Q_{peak} = 100 \\ \\ Pipe = \\ Length = 13 \\ \\ H_L = \frac{10.44 \ L \ Q^1}{C^{1.85} \ p^{4.86}} \end{array}$	00 gpm 6 inch 35 LF (app .85	0rox. dista 10.44(13 (140)	nce from F 35)(1000) ^{1.85} .85 (6) ^{4.866}	C =	= 140 arthest hy		3.79	psi							
Residual i Casure at Hyurant 1 - 32 - 2.3 - 47.2 psi	INCOMMAN I TESSUE AL TIVUI AII.	$\begin{array}{c cccc} \underline{Proposed~Multi-Family} \\ Q = & 1,000~gpd \\ \\ \hline \\ Peadlosses: \\ Q_{peak} = & 100 \\ \hline \\ Pipe = & 13 \\ \\ Length = & 13 \\ \hline \\ H_L = & \frac{10.44~L~Q^1}{C^{1.85}~p^{4.86}} \\ \\ \hline \\ \Delta~elev = & -3~ft = & 100 \\ \hline \\ \hline \\ \Delta~elev = & -3~ft = & 100 \\ \hline \\ \hline \\ \Delta~elev = & -3~ft = & 100 \\ \hline \\ \hline \\ \Delta~elev = & -3~ft = & 100 \\ \hline \\ \Delta~elev = & -3~ft = $	00 gpm 6 inch 35 LF (app .85	prox. dista 10.44(13 (140) ¹ psi	35)(1000) ^{1.85}	C = RPZ to fi	= 140 arthest hy 8.75		3.79	pSi							
		Proposed Multi-Family $Q = 1,000 \text{ gpd}$ Headlosses: $Q_{peak} = 100$ $Pipe = 13$ $Length = 13$ $H_{L} = \frac{10.44 \text{ L Q}^{1}}{C^{1.85} D^{4.86}}$ $\Delta \text{ elev} = -3 \text{ ft } = 100$ Static Pressure after	00 gpm 6 inch 55 LF (app85 6 = -1.30	prox. dista 10.44(13 (140) ¹ psi	35)(1000) ^{1.85} (6) ^{4.866}	C = RPZ to fi	= 140 arthest hy 8.75	######################################		psi							
		Proposed Multi-Family $Q = 1,000 \text{ gpd}$ Headlosses: $Q_{peak} = 100$ $Pipe = 13$ $Length = 13$ $H_{L} = \frac{10.44 \text{ L Q}^{1}}{C^{1.85} D^{4.86}}$ $\Delta \text{ elev} = -3 \text{ ft } = 100$ Static Pressure after	00 gpm 6 inch 55 LF (app85 6 = -1.30	prox. dista 10.44(13 (140) ¹ psi	35)(1000) ^{1.85} (6) ^{4.866}	C = RPZ to fi	= 140 arthest hy 8.75	######################################		DSI							
		Proposed Multi-Family $Q = 1,000 \text{ gpd}$ Headlosses: $Q_{peak} = 100$ $Pipe = 13$ $Length = 13$ $H_{L} = \frac{10.44 \text{ L Q}^{1}}{C^{1.85} D^{4.86}}$ $\Delta \text{ elev} = -3 \text{ ft } = 100$ Static Pressure after	00 gpm 6 inch 55 LF (app85 6 = -1.30	prox. dista 10.44(13 (140) ¹ psi	35)(1000) ^{1.85} (6) ^{4.866}	C = RPZ to fi	= 140 arthest hy 8.75	######################################									
		Proposed Multi-Family $Q = 1,000 \text{ gpd}$ Headlosses: $Q_{peak} = 100$ $Pipe = 13$ $Length = 13$ $H_{L} = \frac{10.44 \text{ L Q}^{1}}{C^{1.85} D^{4.86}}$ $\Delta \text{ elev} = -3 \text{ ft } = 100$ Static Pressure after	00 gpm 6 inch 55 LF (app85 6 = -1.30	prox. dista 10.44(13 (140) ¹ psi	35)(1000) ^{1.85} (6) ^{4.866}	C = RPZ to fi	= 140 arthest hy 8.75	######################################		psi							
		Proposed Multi-Family $Q = 1,000 \text{ gpd}$ Headlosses: $Q_{peak} = 100$ $Pipe = 13$ $Length = 13$ $H_{L} = \frac{10.44 \text{ L Q}^{1}}{C^{1.85} D^{4.86}}$ $\Delta \text{ elev} = -3 \text{ ft } = 100$ Static Pressure after	00 gpm 6 inch 55 LF (app85 6 = -1.30	prox. dista 10.44(13 (140) ¹ psi	35)(1000) ^{1.85} (6) ^{4.866}	C = RPZ to fi	= 140 arthest hy 8.75	######################################		PSi							

Print Date: 9/03/2025

Residual Hydrant: K08A40 Test Date/Time: 11/24/2020 13:12

Location....: 1060 WEHRLE DR 1ST HYD W/O SOUTH CAYUGA DR

TOWN OF AMHERST

Size of Main/Branch: 8"/6" Fire District: 22022 FIRE DISTRICT 1 Water District: 184 ECWA AREA-TOWN OF AMHERST

Performed By: BPS/CDB Comments: HYDRANT FLOW TEST REQUESTED BY THOMAS YAGER, ISO

EMAIL: TYAGER@ISO.COM

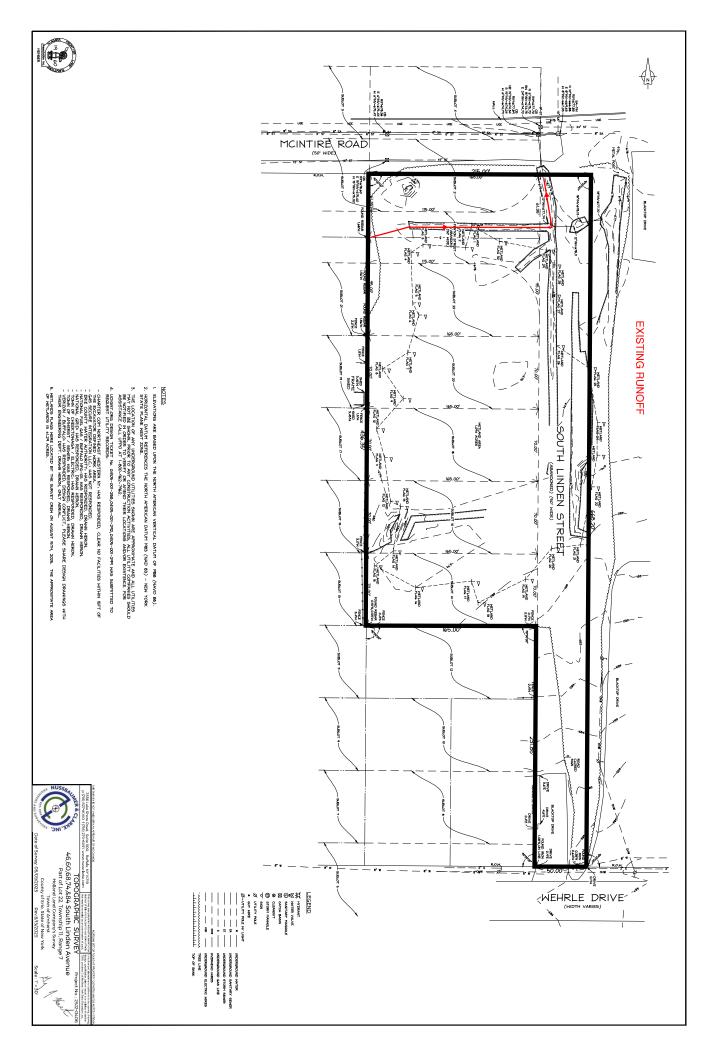
CW #52682 ------

Dischrge Coef: 090 Elvtn Usgs(ft): Static(psi): 52 Residual(psi): 46 Required Residual Pressure(psi): 20
Gallons Used..: 4,920 Total Flow(gpm): 1,644 Flow at Reqd Resid Pressure: 4,060

Flow Hydrants:

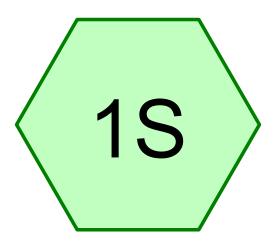
Flow Hyd Location Main/Brnch Nzle Size Pitot Flow Comments

K08 A38 OP 1003 WEHRLE DR 8"/6" 1: 2.50 24.0 822


1ST W/O CAYUGA RD 2: 2.50 24.0 822

3: Total Flow: 1,644

Appendix B


Storm Sewer System Drainage Calculations

Existing Runoff

Events for Subcatchment 1S: Existing

Event	Rainfall (inches)	Runoff (cfs)	Volume (cubic-feet)	Depth (inches)
1-Year	1.87	0.43	3,905	0.45
2-Year	2.20	0.66	5,605	0.64
5-Year	2.69	1.05	8,426	0.97
10-Year	3.14	1.44	11,254	1.29
25-Year	3.84	2.08	15,981	1.83
50-Year	4.48	2.71	20,558	2.36
100-Year	5.23	3.46	26,142	3.00

Existing

Printed 9/25/2025

Page 2

Rainfall Events Listing (selected events)

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	1-Year	Type II 24-hr		Default	24.00	1	1.87	2
2	10-Year	Type II 24-hr		Default	24.00	1	3.14	2
3	100-Year	Type II 24-hr		Default	24.00	1	5.23	2

23-4154 existing
Prepared by Carmina Wood Design
HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 9/25/2025 Page 3

Area Listing (all nodes)

104,544	79	TOTAL AREA
104,544	79	Woods, Fair, HSG D (1S)
(sq-ft)		(subcatchment-numbers)
Area	CN	Description

Printed 9/25/2025 Page 4

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
0	HSG B	
0	HSG C	
104,544	HSG D	1S
0	Other	
104,544		TOTAL AREA

23-4154 existing
Prepared by Carmina Wood Design
HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 9/25/2025

Page 5

Ground Covers (all nodes)

	HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
_	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover	Numbers
	0	0	0	104,544	0	104,544	Woods, Fair	1
								S
	0	0	0	104,544	0	104,544	TOTAL AREA	١

23-4154 existing

Type II 24-hr 1-Year Rainfall=1.87"

Prepared by Carmina Wood Design
HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 9/25/2025

Page 6

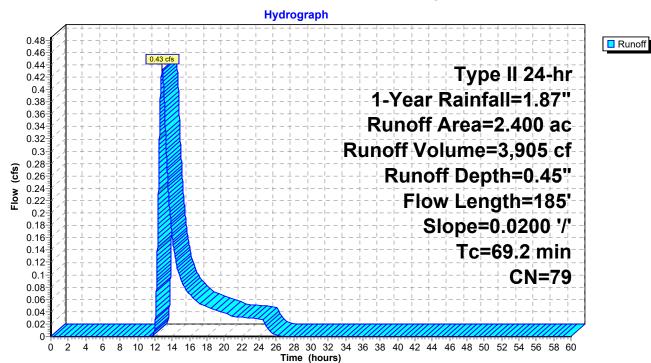
Time span=0.00-60.00 hrs, dt=0.01 hrs, 6001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Existing Runoff Area=2.400 ac 0.00% Impervious Runoff Depth=0.45" Flow Length=185' Slope=0.0200 '/' Tc=69.2 min CN=79 Runoff=0.43 cfs 3,905 cf

Total Runoff Area = 104,544 sf Runoff Volume = 3,905 cf Average Runoff Depth = 0.45" 100.00% Pervious = 104,544 sf 0.00% Impervious = 0 sf

Printed 9/25/2025

Page 7


Summary for Subcatchment 1S: Existing

Runoff = 0.43 cfs @ 12.84 hrs, Volume= 3,905 cf, Depth= 0.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=1.87"

_	Area	(ac) C	N Desc	cription		
	2.	400 7	'9 Woo	ds, Fair, F	ISG D	
	2.	400	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	69.2	185	0.0200	0.04		Sheet Flow, woods Woods: Dense underbrush n= 0.800 P2= 2.50"

Subcatchment 1S: Existing

23-4154 existing

Type II 24-hr 10-Year Rainfall=3.14"

Prepared by Carmina Wood Design
HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 9/25/2025

Page 8

Time span=0.00-60.00 hrs, dt=0.01 hrs, 6001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Existing

Runoff Area=2.400 ac 0.00% Impervious Runoff Depth=1.29"

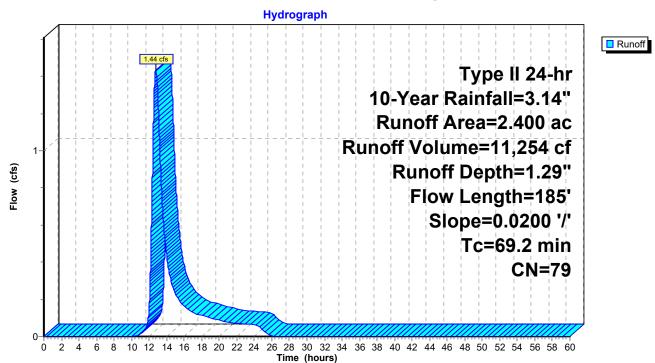
Flow Length=185' Slope=0.0200 '/' Tc=69.2 min CN=79 Runoff=1.44 cfs 11,254 cf

Total Runoff Area = 104,544 sf Runoff Volume = 11,254 cf Average Runoff Depth = 1.29" 100.00% Pervious = 104,544 sf 0.00% Impervious = 0 sf

Printed 9/25/2025

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 9


Summary for Subcatchment 1S: Existing

Runoff = 1.44 cfs @ 12.77 hrs, Volume= 11,254 cf, Depth= 1.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.14"

Area	(ac) C	N Desc	cription		
2	.400 7	'9 Woo	ds, Fair, F	ISG D	
2	.400	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
69.2	185	0.0200	0.04		Sheet Flow, woods Woods: Dense underbrush n= 0.800 P2= 2.50"

Subcatchment 1S: Existing

23-4154 existing

Type II 24-hr 100-Year Rainfall=5.23"

Prepared by Carmina Wood Design
HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 9/25/2025

Page 10

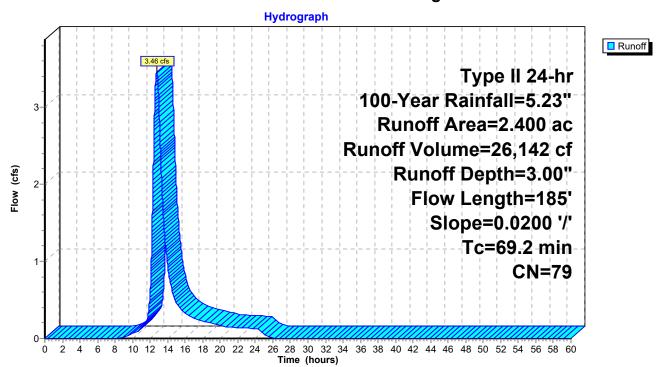
Time span=0.00-60.00 hrs, dt=0.01 hrs, 6001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Existing Runoff Area=2.400 ac 0.00% Impervious Runoff Depth=3.00" Flow Length=185' Slope=0.0200 '/' Tc=69.2 min CN=79 Runoff=3.46 cfs 26,142 cf

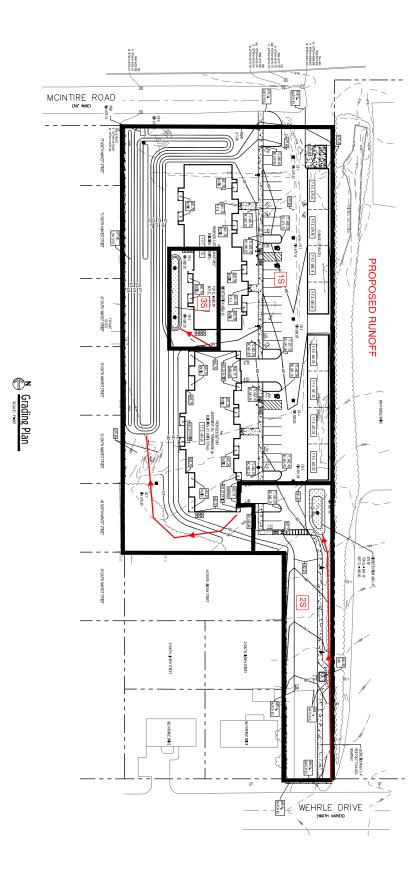
Total Runoff Area = 104,544 sf Runoff Volume = 26,142 cf Average Runoff Depth = 3.00" 100.00% Pervious = 104,544 sf 0.00% Impervious = 0 sf

Printed 9/25/2025

Page 11


Summary for Subcatchment 1S: Existing

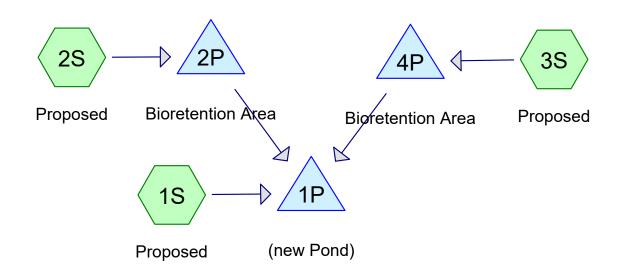
Runoff = 3.46 cfs @ 12.76 hrs, Volume= 26,142 cf, Depth= 3.00"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.23"

_	Area	(ac) C	N Desc	cription		
	2.	400 7	'9 Woo	ds, Fair, F	ISG D	
	2.	400	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	69.2	185	0.0200	0.04		Sheet Flow, woods Woods: Dense underbrush n= 0.800 P2= 2.50"

Subcatchment 1S: Existing

Proposed Runoff



23-4154 proposedPrepared by Carmina Wood Design

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Events for Pond 1P: (new Pond)

Event	Inflow (cfs)	Primary (cfs)	Elevation (feet)	Storage (cubic-feet)
	(0.0)	(5.5)	(,	(0000101001)
1-Year	0.81	0.39	676.94	1,555
2-Year	1.08	0.46	677.24	2,504
5-Year	1.49	0.53	677.63	4,204
10-Year	1.88	0.58	677.95	5,991
25-Year	2.49	0.64	678.40	9,053
50-Year	3.06	0.69	678.79	12,039
100-Year	3.73	1.75	678.97	13,513

Routing Diagram for 23-4154 proposed
Prepared by Carmina Wood Design, Printed 12/18/2025
HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 12/18/2025

Page 2

Rainfall Events Listing (selected events)

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	Type II 24-hr		Default	24.00	1	1.87	2
2	10-Year	Type II 24-hr		Default	24.00	1	3.14	2
3	25-Year	Type II 24-hr		Default	24.00	1	3.84	2
4	100-Year	Type II 24-hr		Default	24.00	1	5.23	2

Printed 12/18/2025 Page 3

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
50,094	80	>75% Grass cover, Good, HSG D (1S, 2S, 3S)
28,314	98	Paved parking, HSG D (1S, 2S, 3S)
17,424	98	Roofs, HSG D (1S)
8,712	79	Woods, Fair, HSG D (1S, 2S)
104,544	88	TOTAL AREA

Printed 12/18/2025 Page 4

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
0	HSG B	
0	HSG C	
104,544	HSG D	1S, 2S, 3S
0	Other	
104,544		TOTAL AREA

23-4154 proposed
Prepared by Carmina Wood Design
HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 12/18/2025

Page 5

Su Nυ

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground
 (sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover
 0	0	0	50,094	0	50,094	>75% Grass
						cover, Good
0	0	0	28,314	0	28,314	Paved parking
0	0	0	17,424	0	17,424	Roofs
0	0	0	8,712	0	8,712	Woods, Fair
0	0	0	104.544	0	104.544	TOTAL AREA

23-4154 proposedPrepared by Carmina Wood Design
HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 12/18/2025 Page 6

Pipe Listing (all nodes)

 Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
1	1P	675.90	675.60	30.0	0.0100	0.013	0.0	10.0	0.0
2	2P	678.30	678.11	61.0	0.0031	0.013	0.0	6.0	0.0
3	4P	677.36	677.30	22.0	0.0027	0.013	0.0	6.0	0.0

Prepared by Carmina Wood Design

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 12/18/2025 Page 7

Time span=0.00-60.00 hrs, dt=0.05 hrs, 1201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Proposed Runoff Area=1.750 ac 40.00% Impervious Runoff Depth=0.81"

Flow Length=200' Slope=0.0100 '/' Tc=79.9 min CN=87 Runoff=0.59 cfs 5,116 cf

Subcatchment2S: Proposed Runoff Area=0.400 ac 62.50% Impervious Runoff Depth=1.05"

Flow Length=250' Slope=0.0200 '/' Tc=67.4 min CN=91 Runoff=0.21 cfs 1,526 cf

Subcatchment3S: Proposed Runoff Area=0.250 ac 40.00% Impervious Runoff Depth=0.81"

Flow Length=40' Slope=0.0080 '/' Tc=7.7 min CN=87 Runoff=0.33 cfs 731 cf

Pond 1P: (new Pond)

Peak Elev=676.94' Storage=1,555 cf Inflow=0.81 cfs 7,372 cf

Outflow=0.39 cfs 7,372 cf

Pond 2P: Bioretention Area Peak Elev=681.39' Storage=361 cf Inflow=0.21 cfs 1,526 cf

Outflow=0.20 cfs 1,526 cf

Pond 4P: Bioretention Area Peak Elev=680.52' Storage=331 cf Inflow=0.33 cfs 731 cf

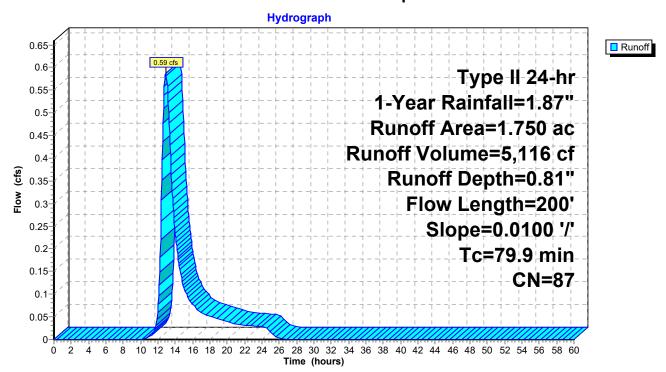
Outflow=0.05 cfs 731 cf

Total Runoff Area = 104,544 sf Runoff Volume = 7,372 cf Average Runoff Depth = 0.85" 56.25% Pervious = 58,806 sf 43.75% Impervious = 45,738 sf

Printed 12/18/2025

Page 8

Summary for Subcatchment 1S: Proposed


Runoff = 0.59 cfs @ 12.91 hrs, Volume= 5,116 cf, Depth= 0.81"

Routed to Pond 1P: (new Pond)

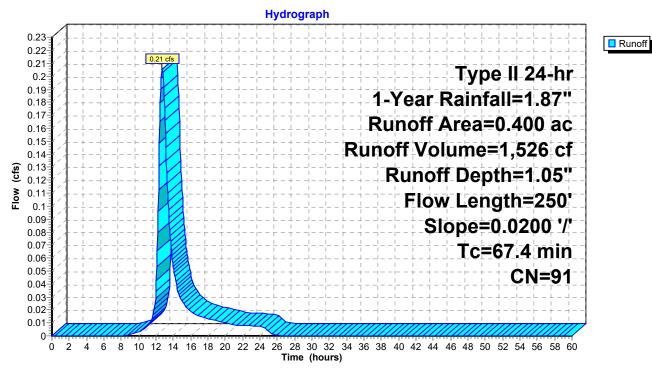
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year Rainfall=1.87"

	Area	(ac) C	N Des	cription			
	0.150 79 Woods, Fair, HSG D						
	0.400 98 Roofs, HSG D						
0.300 98 Paved parking, HSG D					, HSG D		
_	0.	900	80 >75	% Grass c	over, Good	, HSG D	
1.750 87 Weighted Average							
	1.	050	60.0	0% Pervio	us Area		
0.700 40.00% Impervious Area					vious Area		
	_		01				
	Tc	Length	•	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	68.9	130	0.0100	0.03		Sheet Flow, woods	
						Woods: Dense underbrush n= 0.800 P2= 2.50"	
	11.0	70	0.0100	0.11		Sheet Flow, grass	
_						Grass: Short n= 0.150 P2= 2.50"	
	79.9	200	Total				

Subcatchment 1S: Proposed

Page 9

Summary for Subcatchment 2S: Proposed


Runoff = 0.21 cfs @ 12.72 hrs, Volume= 1,526 cf, Depth= 1.05"

Routed to Pond 2P: Bioretention Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year Rainfall=1.87"

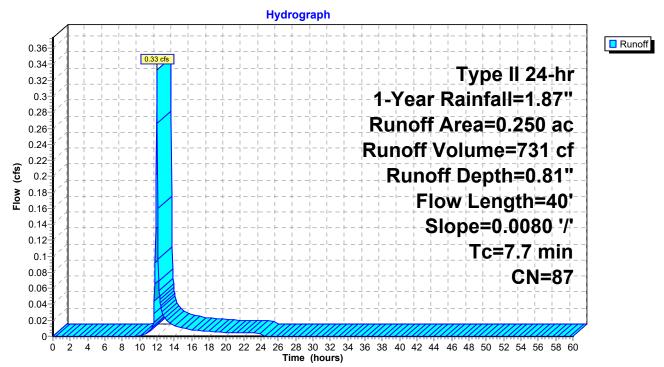
Area	(ac)	CN	Desc	cription					
0.	.050	79	Woo	ds, Fair, H	ISG D				
0.	.100	80	>75%	75% Grass cover, Good, HSG D					
0.	.250	98	Pave	ed parking	, HSG D				
0.	400	91	Weig	hted Aver	age				
0.	.150		37.5	0% Pervio	us Area				
0.250 62.50% Impervious Area									
Tc	Lengt	h S	Slope	Velocity	Capacity	Description			
(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)				
12.0	11	0 0.	0200	0.15		Sheet Flow, grass			
						Grass: Short n= 0.150 P2= 2.50"			
55.4	14	0 0.	0200	0.04		Sheet Flow, woods			
						Woods: Dense underbrush n= 0.800 P2= 2.50"			
67.4	25	0 To	otal						

Subcatchment 2S: Proposed

<u>Page 10</u>

Summary for Subcatchment 3S: Proposed

Runoff = 0.33 cfs @ 11.99 hrs, Volume= 731 cf, Depth= 0.81"


Routed to Pond 4P: Bioretention Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year Rainfall=1.87"

	Area	(ac) C	N Des	Description						
	0.	150	30 >75	75% Grass cover, Good, HSG D						
_	0.	100	98 Pav	ed parking	, HSG D					
	0.250 87 Weighted Average									
	0.	150	60.0	0% Pervio	us Area					
	0.	100	40.0	0% Imperv	∕ious Area					
	-		01		0 ''	5				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	7.7	40	0.0080	0.09		Sheet Flow, grass				

Grass: Short n= 0.150 P2= 2.50"

Subcatchment 3S: Proposed

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 12/18/2025 Page 11

Summary for Pond 1P: (new Pond)

[44] Hint: Outlet device #2 is below defined storage

Inflow Area = 104,544 sf, 43.75% Impervious, Inflow Depth = 0.85" for 1-Year event

Inflow = 0.81 cfs @ 12.89 hrs, Volume= 7,372 cf

Outflow = 0.39 cfs @ 13.74 hrs, Volume= 7,372 cf, Atten= 51%, Lag= 50.9 min

Primary = 0.39 cfs @ 13.74 hrs, Volume= 7,372 cf

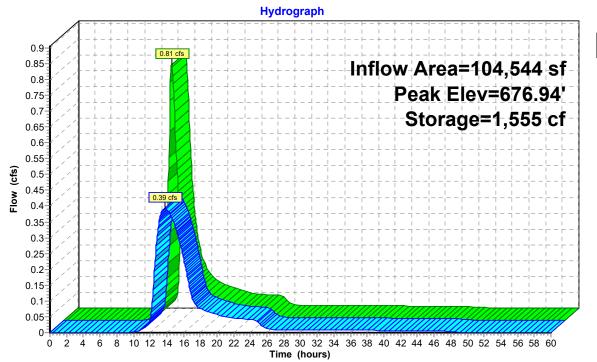
Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 676.94' @ 13.74 hrs Surf.Area= 2,701 sf Storage= 1,555 cf

Plug-Flow detention time= 35.2 min calculated for 7,366 cf (100% of inflow)

Center-of-Mass det. time= 35.2 min (1,050.5 - 1,015.3)

Volume	Inver	t Avail.Sto	<u>rage Storage</u>	Description			
#1	#1 676.00' 13,8°		10 cf Custom	Stage Data (Pi	rismatic)Listed below (Recalc)		
Elevation	on S	Surf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
676.0	00	600	0	0			
677.0	677.00 2,830		1,715	1,715			
678.0	678.00 6,340		4,585	6,300			
679.0	00	8,680	7,510	13,810			
Device	Routing	Invert	Outlet Device	s			
#1	Primary	675.90'	10.0" Round	l Culvert			
	•		L= 30.0' CPI	P, square edge h	neadwall, Ke= 0.500		
			Inlet / Outlet I	nvert= 675.90' /	675.60' S= 0.0100 '/' Cc= 0.900		
			n= 0.013 Cor	= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf			
#2	Device 1	675.90'	675.90' 4.0" Vert. 4" orifice C= 0.600 Limited to weir		00 Limited to weir flow at low heads		
#3	Device 1	678.85'		Horiz. Grate			
			Limited to we	ir flow at low hea	ads		

Primary OutFlow Max=0.39 cfs @ 13.74 hrs HW=676.94' (Free Discharge)


1=Culvert (Passes 0.39 cfs of 2.02 cfs potential flow)

2=4" orifice (Orifice Controls 0.39 cfs @ 4.50 fps)

☐3=Grate (Controls 0.00 cfs)

Page 12

Pond 1P: (new Pond)

Printed 12/18/2025

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 13

Summary for Pond 2P: Bioretention Area

Inflow Area = 17,424 sf, 62.50% Impervious, Inflow Depth = 1.05" for 1-Year event

Inflow 0.21 cfs @ 12.72 hrs, Volume= 1.526 cf

0.20 cfs @ 12.87 hrs, Volume= 0.20 cfs @ 12.87 hrs, Volume= Outflow 1,526 cf, Atten= 5%, Lag= 9.3 min

Primary 1,526 cf

Routed to Pond 1P: (new Pond)

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 681.39' @ 12.87 hrs Surf.Area= 711 sf Storage= 361 cf

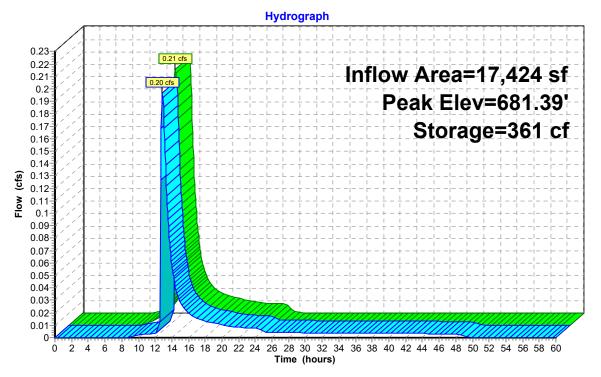
Plug-Flow detention time= 291.2 min calculated for 1,526 cf (100% of inflow)

Center-of-Mass det. time= 291.0 min (1,169.0 - 878.1)

Volume	Inve	ert Avail.Sto	rage Storage D	escription			
#1	680.8	68 68	34 cf Custom S	Stage Data (Pi	rismatic)Listed below (Recalc)		
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
680.8		515	0	0			
681.3	-	675	298	298			
681.8	30	870	386	684			
Device	Routing	Invert	Outlet Devices				
#1	Primary	678.30'	6.0" Round 6'	• •	neadwall, Ke= 0.500		
			Inlet / Outlet Inv	vert= 678.30' /	678.11' S= 0.0031 '/' Cc= 0.900 both interior, Flow Area= 0.20 sf		
#2	Device 1	681.30'	· · · · · · · · · · · · · · · · · · ·				
#3	Device 1	680.80'	0.250 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 670.00'				

Primary OutFlow Max=0.20 cfs @ 12.87 hrs HW=681.39' (Free Discharge)

-1=6" pipe (Passes 0.20 cfs of 1.04 cfs potential flow)


-2=Grate (Weir Controls 0.19 cfs @ 0.99 fps)

3=Exfiltration (Controls 0.00 cfs)

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 14

Pond 2P: Bioretention Area

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 15

Summary for Pond 4P: Bioretention Area

Inflow Area = 10,890 sf, 40.00% Impervious, Inflow Depth = 0.81" for 1-Year event

0.33 cfs @ 11.99 hrs, Volume= Inflow 731 cf

0.05 cfs @ 12.34 hrs, Volume= 0.05 cfs @ 12.34 hrs, Volume= Outflow 731 cf, Atten= 86%, Lag= 20.5 min

Primary = 731 cf

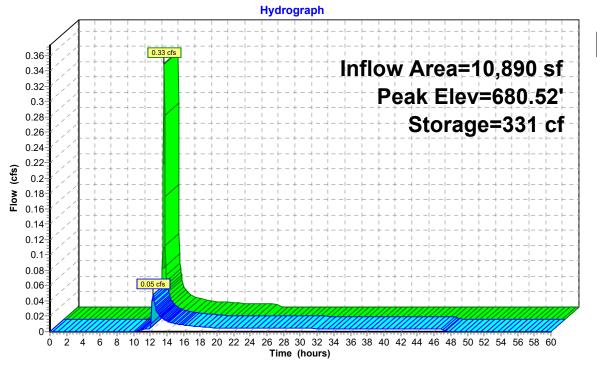
Routed to Pond 1P: (new Pond)

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 680.52' @ 12.34 hrs Surf.Area= 760 sf Storage= 331 cf

Plug-Flow detention time= 593.7 min calculated for 730 cf (100% of inflow)

Center-of-Mass det. time= 594.5 min (1,436.7 - 842.2)

Volume	Inve	ert Avail.Sto			
#1 680.00' 75		51 cf Custom S	tage Data (Pr	rismatic)Listed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
680.0	00	510	0	0	
680.5	50	750	315	315	
681.0	00	995	436	751	
Device	Routing	Invert	Outlet Devices		
#1	Primary	677.36'	6.0" Round 6"	pipe	
#2	Device 1	680.50'			677.30' S= 0.0027'/' Cc= 0.900 coth interior, Flow Area= 0.20 sf 0.600 Limited to weir flow at low heads
#3 Device 1 680.00' 0.250 in/hr Exfiltration over Surfa Conductivity to Groundwater Elevati					


Primary OutFlow Max=0.05 cfs @ 12.34 hrs HW=680.52' (Free Discharge)

-1=6" pipe (Passes 0.05 cfs of 1.44 cfs potential flow)

2=Grate (Weir Controls 0.04 cfs @ 0.48 fps)
3=Exfiltration (Controls 0.00 cfs)

Page 16

Pond 4P: Bioretention Area

Prepared by Carmina Wood Design

Printed 12/18/2025

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 17

Time span=0.00-60.00 hrs, dt=0.05 hrs, 1201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Proposed Runoff Area=1.750 ac 40.00% Impervious Runoff Depth=1.86"

Flow Length=200' Slope=0.0100 '/' Tc=79.9 min CN=87 Runoff=1.41 cfs 11,828 cf

Subcatchment2S: Proposed Runoff Area=0.400 ac 62.50% Impervious Runoff Depth=2.20"

Flow Length=250' Slope=0.0200 '/' Tc=67.4 min CN=91 Runoff=0.43 cfs 3,197 cf

Subcatchment3S: Proposed Runoff Area=0.250 ac 40.00% Impervious Runoff Depth=1.86"

Flow Length=40' Slope=0.0080 '/' Tc=7.7 min CN=87 Runoff=0.76 cfs 1,690 cf

Pond 1P: (new Pond) Peak Elev=677.95' Storage=5,991 cf Inflow=1.88 cfs 16,715 cf

Outflow=0.58 cfs 16,715 cf

Pond 2P: Bioretention Area Peak Elev=681.46' Storage=408 cf Inflow=0.43 cfs 3,197 cf

Outflow=0.43 cfs 3,197 cf

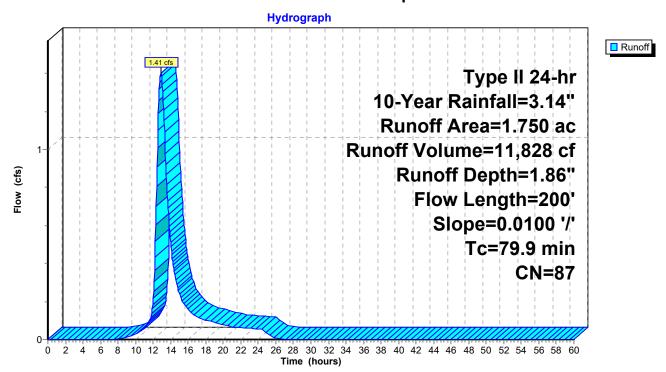
Pond 4P: Bioretention Area Peak Elev=680.64' Storage=424 cf Inflow=0.76 cfs 1,690 cf

Outflow=0.71 cfs 1,690 cf

Total Runoff Area = 104,544 sf Runoff Volume = 16,715 cf Average Runoff Depth = 1.92" 56.25% Pervious = 58,806 sf 43.75% Impervious = 45,738 sf

Page 18

Summary for Subcatchment 1S: Proposed


Runoff = 1.41 cfs @ 12.88 hrs, Volume= 11,828 cf, Depth= 1.86"

Routed to Pond 1P: (new Pond)

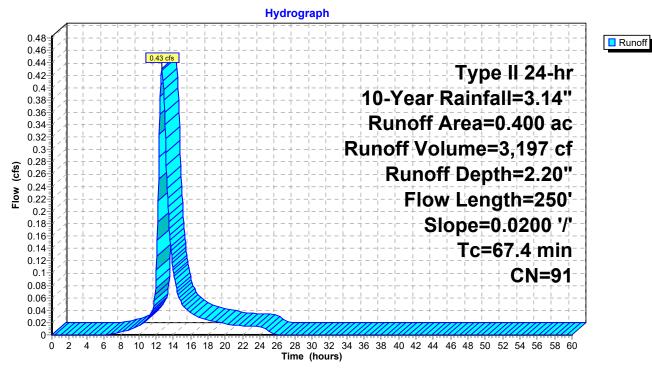
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.14"

	Area	(ac) (CN De	scription					
	0.	150	79 W	ods, Fair, I	HSG D				
	0.	400	98 Ro	oofs, HSG D					
	0.	300	98 Pa	aved parking, HSG D					
	0.	900	80 >7	5% Grass c	over, Good	, HSG D			
	1.	750	87 W	eighted Ave	rage				
	1.	050	60	.00% Pervio	ous Area				
	0.	700	40	.00% Imper	vious Area				
	Тс	Length			Capacity	Description			
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
	68.9	130	0.010	0.03		Sheet Flow, woods			
						Woods: Dense underbrush n= 0.800 P2= 2.50"			
	11.0	70	0.010	0.11		Sheet Flow, grass			
						Grass: Short n= 0.150 P2= 2.50"			
	79.9	200	Total		·				

Subcatchment 1S: Proposed

<u>Page 19</u>

Summary for Subcatchment 2S: Proposed


Runoff = 0.43 cfs @ 12.69 hrs, Volume= 3,197 cf, Depth= 2.20"

Routed to Pond 2P: Bioretention Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.14"

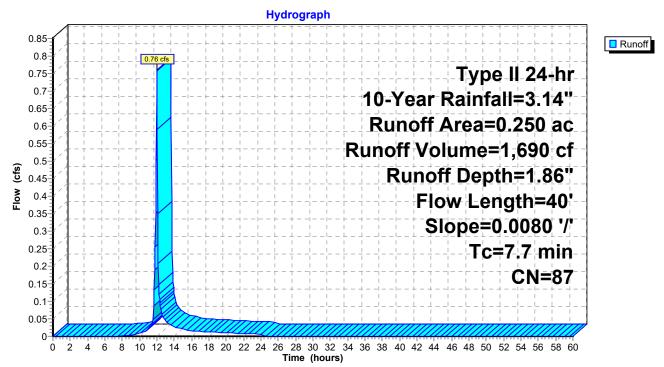
Area	(ac)	CN	Desc	cription					
0.	.050	79	Woo	ds, Fair, H	ISG D				
0.	.100	80	>75%	75% Grass cover, Good, HSG D					
0.	.250	98	Pave	ed parking	, HSG D				
0.	400	91	Weig	hted Aver	age				
0.	.150		37.5	0% Pervio	us Area				
0.250 62.50% Impervious Area									
Tc	Lengt	h S	Slope	Velocity	Capacity	Description			
(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)				
12.0	11	0 0.	0200	0.15		Sheet Flow, grass			
						Grass: Short n= 0.150 P2= 2.50"			
55.4	14	0 0.	0200	0.04		Sheet Flow, woods			
						Woods: Dense underbrush n= 0.800 P2= 2.50"			
67.4	25	0 To	otal						

Subcatchment 2S: Proposed

Page 20

Summary for Subcatchment 3S: Proposed

Runoff = 0.76 cfs @ 11.99 hrs, Volume= 1,690 cf, Depth= 1.86"


Routed to Pond 4P: Bioretention Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.14"

	Area	(ac) C	N Des	Description						
	0.	150	30 >75	75% Grass cover, Good, HSG D						
_	0.	100	98 Pav	ed parking	, HSG D					
	0.250 87 Weighted Average									
	0.	150	60.0	0% Pervio	us Area					
	0.	100	40.0	0% Imperv	∕ious Area					
	-		01		0 ''	5				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	7.7	40	0.0080	0.09		Sheet Flow, grass				

Grass: Short n= 0.150 P2= 2.50"

Subcatchment 3S: Proposed

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 21

Summary for Pond 1P: (new Pond)

[44] Hint: Outlet device #2 is below defined storage

[79] Warning: Submerged Pond 4P Primary device # 1 INLET by 0.59'

Inflow Area = 104,544 sf, 43.75% Impervious, Inflow Depth = 1.92" for 10-Year event

Inflow 1.88 cfs @ 12.85 hrs, Volume= 16,715 cf

Outflow = 0.58 cfs @ 14.14 hrs, Volume= 16,715 cf, Atten= 69%, Lag= 77.5 min

0.58 cfs @ 14.14 hrs, Volume= Primary 16.715 cf

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 677.95' @ 14.14 hrs Surf.Area= 6,166 sf Storage= 5,991 cf

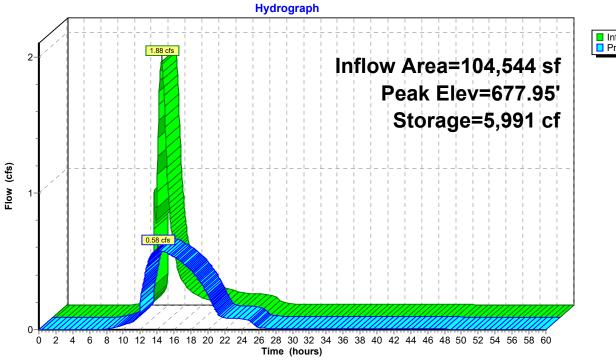
Plug-Flow detention time= 99.1 min calculated for 16,715 cf (100% of inflow)

Center-of-Mass det. time= 99.0 min (1,027.8 - 928.8)

Volume	Inve	ert Avail.Sto	rage St	orage	Description			
#1	676.0	00' 13,8	10 cf C ı	ustom	Stage Data (P	rismatic)Listed below (Recalc)		
Elevatio		Surf.Area (sq-ft)	Inc.Sto		Cum.Store (cubic-feet)			
676.0	00	600	`	0	0			
677.00 2,830		1,7	715	1,715				
678.00 6,340		4,5	585	6,300				
679.0	00	8,680	7,5	510	13,810			
Device	Routing	Invert	Outlet [Device	S			
#1	Primary	675.90'	10.0" F	Round	Culvert			
	•		L= 30.0	' CPF	P, square edge l	headwall, Ke= 0.500		
			Inlet / C	otlet l	nvert= 675.90' /	675.60' S= 0.0100 '/' Cc= 0.900		
			n= 0.01	n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf				
#2	Device 1	675.90'	4.0" Ve	rt. 4"	orifice C= 0.60	00 Limited to weir flow at low heads		
#3	Device 1	ce 1 678.85' 24.0		1.0" x 24.0" Horiz. Grate C= 0.600				
			Limited	to wei	r flow at low hea	ads		

Primary OutFlow Max=0.58 cfs @ 14.14 hrs HW=677.95' (Free Discharge)

1=Culvert (Passes 0.58 cfs of 3.28 cfs potential flow)


-2=4" orifice (Orifice Controls 0.58 cfs @ 6.61 fps)

-3=Grate (Controls 0.00 cfs)

Page 22

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Pond 1P: (new Pond)

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 23

Summary for Pond 2P: Bioretention Area

Inflow Area = 17,424 sf, 62.50% Impervious, Inflow Depth = 2.20" for 10-Year event

Inflow 0.43 cfs @ 12.69 hrs, Volume= 3,197 cf

0.43 cfs @ 12.76 hrs, Volume= 0.43 cfs @ 12.76 hrs, Volume= Outflow 3,197 cf, Atten= 1%, Lag= 3.7 min

Primary 3,197 cf

Routed to Pond 1P: (new Pond)

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 681.46' @ 12.76 hrs Surf.Area= 736 sf Storage= 408 cf

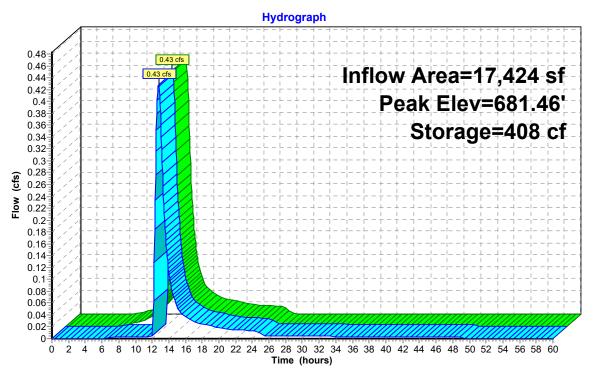
Plug-Flow detention time= 149.9 min calculated for 3,197 cf (100% of inflow)

Center-of-Mass det. time= 149.7 min (1,006.7 - 857.0)

Volume	Inve	ert Avail.Sto	rage Storage De	escription			
#1	1 680.80' 68		34 cf Custom S	cf Custom Stage Data (Prismatic)Listed below (Recalc)			
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
680.8	30	515	0	0			
681.3	30	675	298	298			
681.8	30	870	386	684			
Device	Routing	Invert	Outlet Devices				
#1	Primary	678.30'	6.0" Round 6" pipe L= 61.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 678.30' / 678.11' S= 0.0031 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf				
#2 #3	Device 1 Device 1	681.30' 680.80'	8.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads 0.250 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 670.00'				

Primary OutFlow Max=0.43 cfs @ 12.76 hrs HW=681.46' (Free Discharge)

-1=6" pipe (Passes 0.43 cfs of 1.06 cfs potential flow)


-2=Grate (Weir Controls 0.42 cfs @ 1.29 fps)

-3=Exfiltration (Controls 0.00 cfs)

Page 24

1024 HydroCAD Software Solutions LLC

Pond 2P: Bioretention Area

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 25

Summary for Pond 4P: Bioretention Area

Inflow Area = 10,890 sf, 40.00% Impervious, Inflow Depth = 1.86" for 10-Year event

Inflow 0.76 cfs @ 11.99 hrs, Volume= 1.690 cf

0.71 cfs @ 12.02 hrs, Volume= 0.71 cfs @ 12.02 hrs, Volume= Outflow 1,690 cf, Atten= 6%, Lag= 1.9 min

Primary = 1,690 cf

Routed to Pond 1P: (new Pond)

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 680.64' @ 12.02 hrs Surf.Area= 818 sf Storage= 424 cf

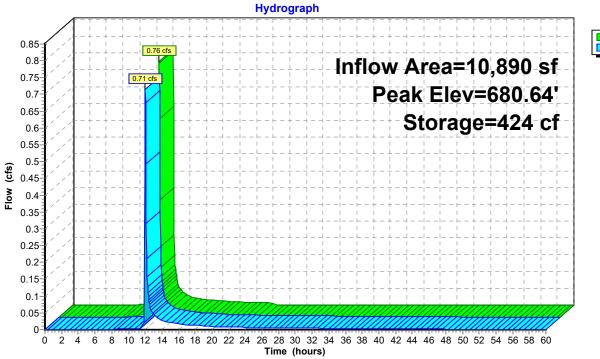
Plug-Flow detention time= 268.8 min calculated for 1,690 cf (100% of inflow)

Center-of-Mass det. time= 268.6 min (1,086.8 - 818.2)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	680.0	00' 75	51 cf Custom	Stage Data (Prismatic)	isted below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
680.0	00	510	0	0	
680.5	50	750	315	315	
681.0	00	995	436	751	
Device	Routing	Invert	Outlet Device	6	
#1	Primary	677.36'	6.0" Round	5" pipe	
#2 #3	Device 1	680.50' 680.00'	L= 22.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 677.36' / 677.30' S= 0.0027 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf ' 8.0" Horiz. Grate X 2.00 C= 0.600 Limited to weir flow at low		

Primary OutFlow Max=0.68 cfs @ 12.02 hrs HW=680.63' (Free Discharge)

-1=6" pipe (Passes 0.68 cfs of 1.47 cfs potential flow)


-2=Grate (Weir Controls 0.68 cfs @ 1.20 fps)

3=Exfiltration (Controls 0.00 cfs)

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 26

Pond 4P: Bioretention Area

Prepared by Carmina Wood Design

Printed 12/18/2025

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 27

Time span=0.00-60.00 hrs, dt=0.05 hrs, 1201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Proposed Runoff Area=1.750 ac 40.00% Impervious Runoff Depth=2.49"

Flow Length=200' Slope=0.0100 '/' Tc=79.9 min CN=87 Runoff=1.88 cfs 15,820 cf

Subcatchment2S: Proposed Runoff Area=0.400 ac 62.50% Impervious Runoff Depth=2.86"

Flow Length=250' Slope=0.0200 '/' Tc=67.4 min CN=91 Runoff=0.56 cfs 4,159 cf

Subcatchment3S: Proposed Runoff Area=0.250 ac 40.00% Impervious Runoff Depth=2.49"

Flow Length=40' Slope=0.0080 '/' Tc=7.7 min CN=87 Runoff=1.01 cfs 2,260 cf

Pond 1P: (new Pond) Peak Elev=678.40' Storage=9,053 cf Inflow=2.49 cfs 22,239 cf

Outflow=0.64 cfs 22,239 cf

Pond 2P: Bioretention Area Peak Elev=681.49' Storage=430 cf Inflow=0.56 cfs 4,159 cf

Outflow=0.56 cfs 4,159 cf

Pond 4P: Bioretention Area Peak Elev=680.67' Storage=448 cf Inflow=1.01 cfs 2,260 cf

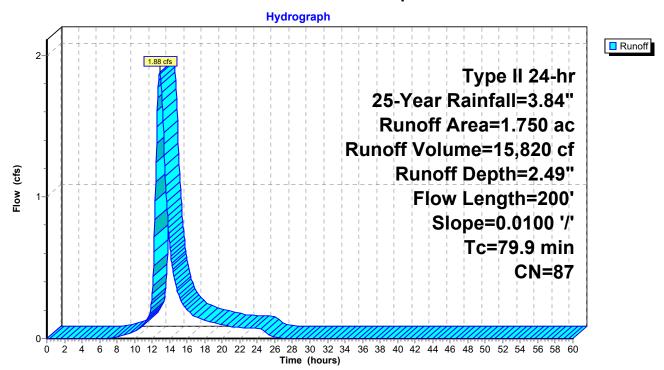
Outflow=0.95 cfs 2,260 cf

Total Runoff Area = 104,544 sf Runoff Volume = 22,239 cf Average Runoff Depth = 2.55" 56.25% Pervious = 58,806 sf 43.75% Impervious = 45,738 sf

Printed 12/18/2025 Page 28

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: Proposed


Runoff = 1.88 cfs @ 12.87 hrs, Volume= 15,820 cf, Depth= 2.49"

Routed to Pond 1P: (new Pond)

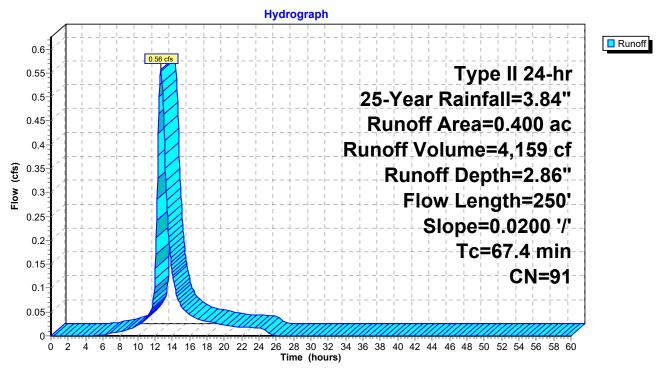
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Year Rainfall=3.84"

Are	a (ac)	CI	N Desc	cription					
	0.150	7	9 Woo	ds, Fair, F	ISG D				
	0.400	9	8 Roof	oofs, HSG D					
	0.300	9	8 Pave	aved parking, HSG D					
	0.900	8	0 >759	% Grass c	over, Good	, HSG D			
	1.750	8	7 Weig	ghted Aver	age				
	1.050		60.0	0% Pervio	us Area				
	0.700		40.0	0% Imper	/ious Area				
т.	lone	.+h	Clana	Valacity	Consoity	Description			
To /min		•	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
(min					(CIS)				
68.9) 1	30	0.0100	0.03		Sheet Flow, woods			
	_					Woods: Dense underbrush n= 0.800 P2= 2.50"			
11.0)	70	0.0100	0.11		Sheet Flow, grass			
						Grass: Short n= 0.150 P2= 2.50"			
79.9	9 2	00	Total						

Subcatchment 1S: Proposed

Page 29

Summary for Subcatchment 2S: Proposed


Runoff = 0.56 cfs @ 12.69 hrs, Volume= 4,159 cf, Depth= 2.86"

Routed to Pond 2P: Bioretention Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Year Rainfall=3.84"

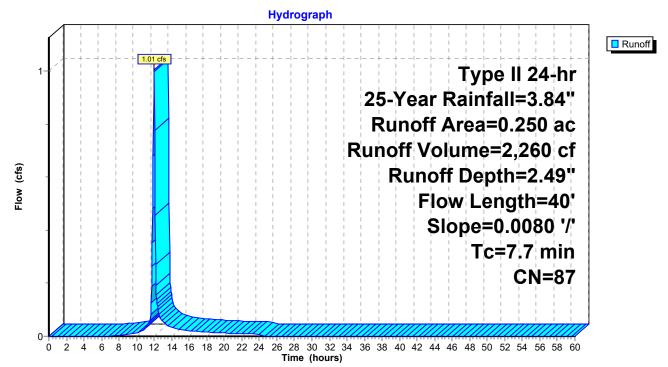
Area	(ac)	CN	Desc	cription		
0.	.050	79	Woo	ds, Fair, H	ISG D	
0.	.100	80	>75%	% Grass co	over, Good	, HSG D
0.	.250	98	Pave	ed parking	, HSG D	
0.	400	91	Weig	hted Aver	age	
0.	.150		37.5	0% Pervio	us Area	
0.	.250		62.5	0% Imperv	/ious Area	
Tc	Lengt	h S	Slope	Velocity	Capacity	Description
(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
12.0	11	0 0.	0200	0.15		Sheet Flow, grass
						Grass: Short n= 0.150 P2= 2.50"
55.4	14	0 0.	0200	0.04		Sheet Flow, woods
						Woods: Dense underbrush n= 0.800 P2= 2.50"
67.4	25	0 To	otal			

Subcatchment 2S: Proposed

Printed 12/18/2025 Page 30

Summary for Subcatchment 3S: Proposed

Runoff = 1.01 cfs @ 11.99 hrs, Volume= 2,260 cf, Depth= 2.49"


Routed to Pond 4P: Bioretention Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Year Rainfall=3.84"

	Area	(ac) (CN Des	scription						
	0.	150	80 >75	% Grass c	, HSG D					
	0.	100	98 Pav	Paved parking, HSG D						
	0.250 87 Weighted Average				age					
	0.150			60.00% Pervious Area						
	0.100			40.00% Impervious Area						
	_		01			B				
	Tc	Length		,	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	7.7	40	0.0080	0.09		Sheet Flow, grass				

Grass: Short n= 0.150 P2= 2.50"

Subcatchment 3S: Proposed

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Printed 12/18/2025 Page 31

Summary for Pond 1P: (new Pond)

[44] Hint: Outlet device #2 is below defined storage

[79] Warning: Submerged Pond 2P Primary device # 1 INLET by 0.10' [79] Warning: Submerged Pond 4P Primary device # 1 INLET by 1.04'

104,544 sf, 43.75% Impervious, Inflow Depth = 2.55" for 25-Year event Inflow Area =

Inflow 2.49 cfs @ 12.84 hrs, Volume= 22,239 cf

0.64 cfs @ 14.31 hrs, Volume= Outflow 22,239 cf, Atten= 74%, Lag= 88.4 min

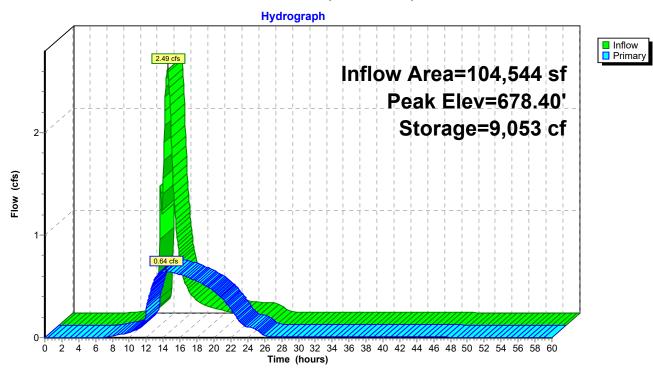
0.64 cfs @ 14.31 hrs, Volume= Primary 22.239 cf

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 678.40' @ 14.31 hrs Surf.Area= 7,285 sf Storage= 9,053 cf

Plug-Flow detention time= 138.9 min calculated for 22,220 cf (100% of inflow)

Center-of-Mass det. time= 138.7 min (1,047.0 - 908.3)

Volume	Inve	ert Avail.Sto	rage Sto	rage Description				
#1	676.0	00' 13,8	10 cf Cu :	stom Stage Data (P	rismatic)Listed below (Recalc)			
Elevation	on	Surf.Area	Inc.Sto	e Cum.Store				
(fee	et)	(sq-ft)	(cubic-fee	t) (cubic-feet)				
676.0	00	600		0 0				
677.0	00	2,830	1,71	5 1,715				
678.0	00	6,340	4,58	6,300				
679.0	00	8,680	7,51	0 13,810				
Device	Routing	Invert	Outlet De	evices				
#1	Primary	675.90'	10.0" R	ound Culvert				
	,		L= 30.0' CPP, square edge headwall, Ke= 0.500					
			Inlet / Outlet Invert= 675.90' / 675.60' S= 0.0100 '/' Cc= 0.900					
			n= 0.013	Corrugated PE, sm	ooth interior, Flow Area= 0.55 sf			
#2	Device 1	675.90'	4.0" Vert. 4" orifice C= 0.600 Limited to weir flow at low heads					
#3	Device 1	678.85'	24.0" x 2	4.0" Horiz. Grate	C= 0.600			
				Limited to weir flow at low heads				


Primary OutFlow Max=0.64 cfs @ 14.31 hrs HW=678.40' (Free Discharge)

-1=Culvert (Passes 0.64 cfs of 3.74 cfs potential flow) 2=4" orifice (Orifice Controls 0.64 cfs @ 7.36 fps)

-3=Grate (Controls 0.00 cfs)

Page 32

Pond 1P: (new Pond)

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 33

Summary for Pond 2P: Bioretention Area

Inflow Area = 17,424 sf, 62.50% Impervious, Inflow Depth = 2.86" for 25-Year event

Inflow 0.56 cfs @ 12.69 hrs, Volume= 4.159 cf

0.56 cfs @ 12.75 hrs, Volume= 0.56 cfs @ 12.75 hrs, Volume= Outflow 4,159 cf, Atten= 1%, Lag= 3.5 min

Primary 4,159 cf

Routed to Pond 1P: (new Pond)

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 681.49' @ 12.75 hrs Surf.Area= 748 sf Storage= 430 cf

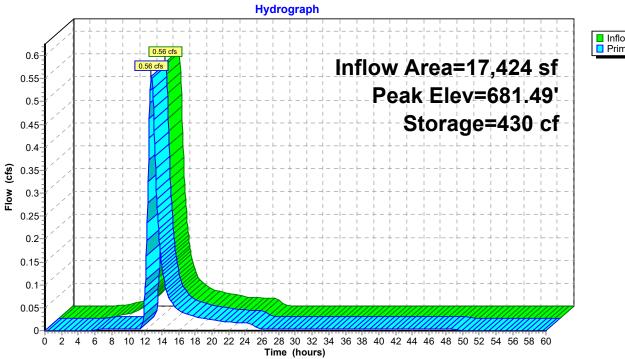
Plug-Flow detention time= 120.3 min calculated for 4,159 cf (100% of inflow)

Center-of-Mass det. time= 120.1 min (969.7 - 849.6)

Volume	Inve	ert Avail.Sto	rage Storage D	escription	
#1	680.8	0' 68	34 cf Custom S	stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio	an.	Surf.Area	Inc.Store	Cum.Store	
				_	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
680.8	30	515	0	0	
681.3	30	675	298	298	
681.8	30	870	386	684	
Device	Routing	Invert	Outlet Devices		
#1	Primary	678.30'	6.0" Round 6"	pipe	
	,				neadwall, Ke= 0.500
					678.11' S= 0.0031 '/' Cc= 0.900
					ooth interior, Flow Area= 0.20 sf
#2	Device 1	681.30'		·	Limited to weir flow at low heads
#2					
#3	Device 1	680.80'	0.250 in/hr Exf		
			Conductivity to	Groundwater E	Elevation = 670.00'

Primary OutFlow Max=0.55 cfs @ 12.75 hrs HW=681.49' (Free Discharge)

-1=6" pipe (Passes 0.55 cfs of 1.06 cfs potential flow)


-2=Grate (Weir Controls 0.55 cfs @ 1.41 fps)

-3=Exfiltration (Controls 0.00 cfs)

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 34

Pond 2P: Bioretention Area

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 35

Summary for Pond 4P: Bioretention Area

Inflow Area = 10,890 sf, 40.00% Impervious, Inflow Depth = 2.49" for 25-Year event

Inflow 1.01 cfs @ 11.99 hrs, Volume= 2.260 cf

0.95 cfs @ 12.01 hrs, Volume= 0.95 cfs @ 12.01 hrs, Volume= Outflow 2,260 cf, Atten= 5%, Lag= 1.5 min

Primary = 2,260 cf

Routed to Pond 1P: (new Pond)

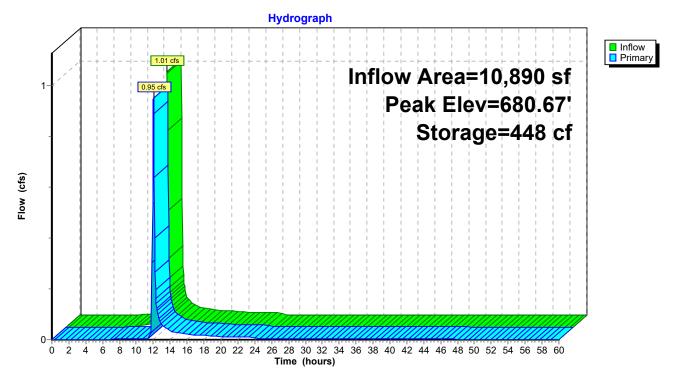
Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 680.67' @ 12.01 hrs Surf.Area= 833 sf Storage= 448 cf

Plug-Flow detention time= 205.6 min calculated for 2,260 cf (100% of inflow)

Center-of-Mass det. time= 205.3 min (1,015.2 - 809.9)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	680.0	00' 75	51 cf Custom	Stage Data (Prismatic)L	isted below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
680.0	00	510	0	0	
680.5	50	750	315	315	
681.0	00	995	436	751	
Device	Routing	Invert	Outlet Device	6	
#1	Primary	677.36'	6.0" Round	5" pipe	
#2 #3	Device 1	680.50' 680.00'	Inlet / Outlet Inn= 0.013 Cor 8.0" Horiz. G 0.250 in/hr Ex	P, square edge headwall, nvert= 677.36' / 677.30' Strugated PE, smooth interiorate X 2.00 C= 0.600 Listiltration over Surface as Groundwater Elevation =	S= 0.0027 '/' Cc= 0.900 or, Flow Area= 0.20 sf mited to weir flow at low heads area

Primary OutFlow Max=0.93 cfs @ 12.01 hrs HW=680.67' (Free Discharge)


-1=6" pipe (Passes 0.93 cfs of 1.48 cfs potential flow)

-2=Grate (Weir Controls 0.93 cfs @ 1.33 fps)

3=Exfiltration (Controls 0.01 cfs)

Page 36

Pond 4P: Bioretention Area

Prepared by Carmina Wood Design

Printed 12/18/2025

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 37

Time span=0.00-60.00 hrs, dt=0.05 hrs, 1201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Proposed Runoff Area=1.750 ac 40.00% Impervious Runoff Depth=3.78"

Flow Length=200' Slope=0.0100 '/' Tc=79.9 min CN=87 Runoff=2.85 cfs 24,040 cf

Subcatchment2S: Proposed Runoff Area=0.400 ac 62.50% Impervious Runoff Depth=4.21"

Flow Length=250' Slope=0.0200 '/' Tc=67.4 min CN=91 Runoff=0.81 cfs 6,107 cf

Subcatchment3S: Proposed Runoff Area=0.250 ac 40.00% Impervious Runoff Depth=3.78"

Flow Length=40' Slope=0.0080 '/' Tc=7.7 min CN=87 Runoff=1.50 cfs 3,434 cf

Pond 1P: (new Pond) Peak Elev=678.97' Storage=13,513 cf Inflow=3.73 cfs 33,581 cf

Outflow=1.75 cfs 33,581 cf

Pond 2P: Bioretention Area Peak Elev=681.54' Storage=470 cf Inflow=0.81 cfs 6,107 cf

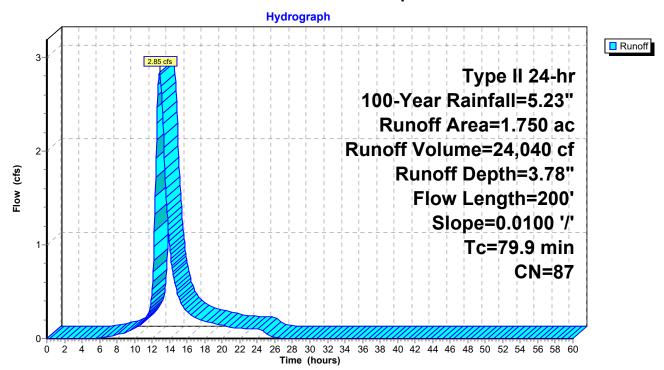
Outflow=0.81 cfs 6,107 cf

Pond 4P: Bioretention Area Peak Elev=680.72' Storage=493 cf Inflow=1.50 cfs 3,434 cf

Outflow=1.43 cfs 3,434 cf

Total Runoff Area = 104,544 sf Runoff Volume = 33,581 cf Average Runoff Depth = 3.85" 56.25% Pervious = 58,806 sf 43.75% Impervious = 45,738 sf

Summary for Subcatchment 1S: Proposed


Runoff = 2.85 cfs @ 12.86 hrs, Volume= 24,040 cf, Depth= 3.78"

Routed to Pond 1P: (new Pond)

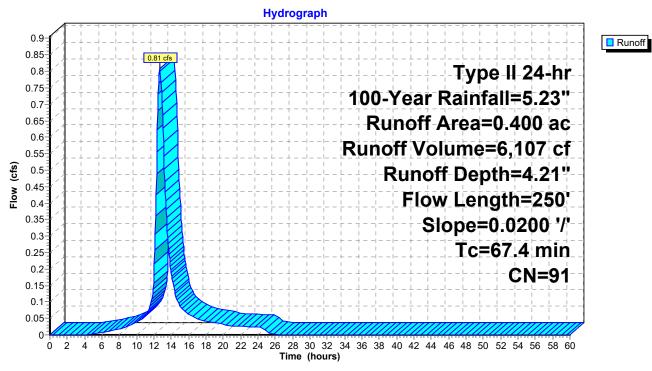
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=5.23"

Area	(ac) C	N Des	cription		
0	.150	79 Woo	ds, Fair, F	ISG D	
0	.400	98 Roo	fs, HSG D		
0	.300	98 Pave	ed parking	, HSG D	
0	.900	30 >75°	% Grass co	over, Good	, HSG D
1	.750	37 Weig	ghted Aver	age	
1	.050	60.0	0% Pervio	us Area	
0	.700	40.0	0% Imperv	vious Area	
				_	
Tc	Length	Slope	Velocity	Capacity	Description
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	_		,		Sheet Flow, woods
(min)	(feet)	(ft/ft)	(ft/sec)		·
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, woods
(min) 68.9	(feet) 130	(ft/ft) 0.0100	(ft/sec) 0.03		Sheet Flow, woods Woods: Dense underbrush n= 0.800 P2= 2.50"

Subcatchment 1S: Proposed

Page 39

Summary for Subcatchment 2S: Proposed


Runoff = 0.81 cfs @ 12.68 hrs, Volume= 6,107 cf, Depth= 4.21"

Routed to Pond 2P: Bioretention Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=5.23"

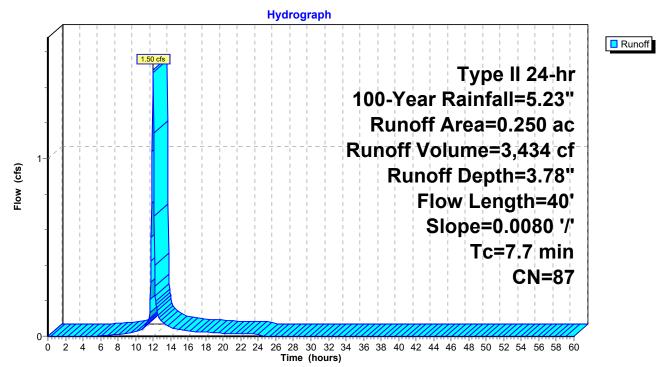
Area	(ac)	CN	Desc	cription		
0.	.050	79	Woo	ds, Fair, H	ISG D	
0.	.100	80	>75%	% Grass co	over, Good	, HSG D
0.	.250	98	Pave	ed parking	, HSG D	
0.	400	91	Weig	hted Aver	age	
0.	.150		37.5	0% Pervio	us Area	
0.	.250		62.5	0% Imperv	/ious Area	
Tc	Lengt	h S	Slope	Velocity	Capacity	Description
(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
12.0	11	0 0.	0200	0.15		Sheet Flow, grass
						Grass: Short n= 0.150 P2= 2.50"
55.4	14	0 0.	0200	0.04		Sheet Flow, woods
						Woods: Dense underbrush n= 0.800 P2= 2.50"
67.4	25	0 To	otal			

Subcatchment 2S: Proposed

Page 40

Summary for Subcatchment 3S: Proposed

Runoff = 1.50 cfs @ 11.99 hrs, Volume= 3,434 cf, Depth= 3.78"


Routed to Pond 4P: Bioretention Area

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=5.23"

_	Area	(ac)	CN [Desc	ription					
	0.	150	80 >	>75%	Grass co	over, Good	, HSG D			
_	0.	.100	98 F	Paved parking, HSG D						
	0.	.250	87 \	Weig	hted Aver	age				
	0.150			60.00% Pervious Area						
	0.100			40.00% Impervious Area						
	_		٠.			• "	—			
	Tc	Length		ppe	Velocity	Capacity	Description			
_	(min)	(feet)	(ft	t/ft)	(ft/sec)	(cfs)				
	7.7	40	0.00	080	0.09		Sheet Flow, grass			

Grass: Short n= 0.150 P2= 2.50"

Subcatchment 3S: Proposed

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 41

Summary for Pond 1P: (new Pond)

[44] Hint: Outlet device #2 is below defined storage

[79] Warning: Submerged Pond 2P Primary device # 1 INLET by 0.67' [79] Warning: Submerged Pond 4P Primary device # 1 INLET by 1.61'

104,544 sf, 43.75% Impervious, Inflow Depth = 3.85" for 100-Year event Inflow Area =

Inflow 3.73 cfs @ 12.83 hrs, Volume= 33,581 cf

1.75 cfs @ 13.67 hrs, Volume= Outflow 33,581 cf, Atten= 53%, Lag= 50.2 min

1.75 cfs @ 13.67 hrs, Volume= Primary 33.581 cf

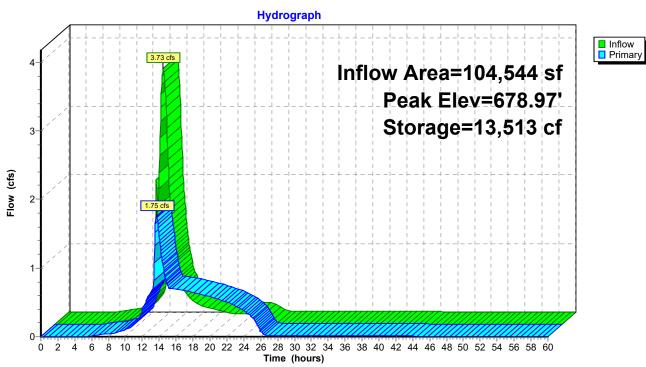
Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 678.97' @ 13.67 hrs Surf.Area= 8,600 sf Storage= 13,513 cf

Plug-Flow detention time= 171.5 min calculated for 33,553 cf (100% of inflow)

Center-of-Mass det. time= 171.3 min (1,055.3 - 884.0)

Volume	Inve	ert Avail.Sto	rage Storaç	ge Description			
#1	676.0)0' 13,8°	10 cf Custo	om Stage Data (Pi	rismatic)Listed below (Recalc)		
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
676.0		600	Ó	0			
677.0	00	2,830	1,715	1,715			
678.0	00	6,340	4,585	6,300			
679.0	00	8,680	7,510	13,810			
Device	Routing	Invert	Outlet Devi	ces			
#1	Primary	675.90'	10.0" Rou	nd Culvert			
	, ,		L= 30.0' CPP, square edge headwall, Ke= 0.500				
					675.60' S= 0.0100 '/' Cc= 0.900		
			n= 0.013 C	Corrugated PE, sm	ooth interior, Flow Area= 0.55 sf		
#2	Device 1	675.90'	4.0" Vert. 4	I" orifice C= 0.60	O Limited to weir flow at low heads		
#3	Device 1	678.85'	24.0" x 24.	0" Horiz. Grate (C= 0.600		
			Limited to weir flow at low heads				

Primary OutFlow Max=1.74 cfs @ 13.67 hrs HW=678.97' (Free Discharge)


-1=Culvert (Passes 1.74 cfs of 4.24 cfs potential flow)

2=4" orifice (Orifice Controls 0.72 cfs @ 8.20 fps)

-3=Grate (Weir Controls 1.02 cfs @ 1.11 fps)

Page 42

Pond 1P: (new Pond)

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 43

Summary for Pond 2P: Bioretention Area

Inflow Area = 17,424 sf, 62.50% Impervious, Inflow Depth = 4.21" for 100-Year event

Inflow 0.81 cfs @ 12.68 hrs, Volume= 6.107 cf

0.81 cfs @ 12.73 hrs, Volume= 0.81 cfs @ 12.73 hrs, Volume= Outflow 6,107 cf, Atten= 0%, Lag= 3.2 min

Primary 6,107 cf

Routed to Pond 1P: (new Pond)

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 681.54' @ 12.73 hrs Surf.Area= 768 sf Storage= 470 cf

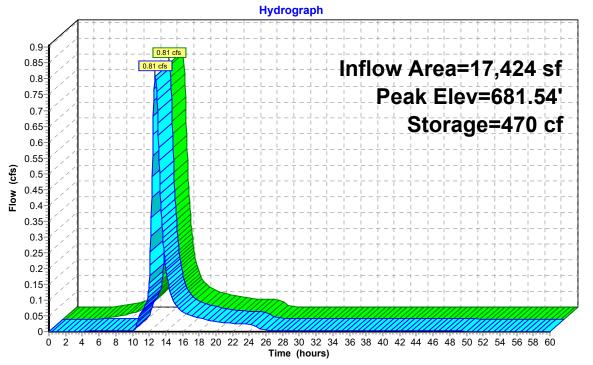
Plug-Flow detention time= 88.3 min calculated for 6,107 cf (100% of inflow)

Center-of-Mass det. time= 88.1 min (927.1 - 839.0)

Volume	Inve	ert Avail.Sto	rage Storage D	escription	
#1	680.8	0' 68	34 cf Custom S	stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio	an.	Surf.Area	Inc.Store	Cum.Store	
				_	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
680.8	30	515	0	0	
681.3	30	675	298	298	
681.8	30	870	386	684	
Device	Routing	Invert	Outlet Devices		
#1	Primary	678.30'	6.0" Round 6"	pipe	
	,				neadwall, Ke= 0.500
					678.11' S= 0.0031 '/' Cc= 0.900
					ooth interior, Flow Area= 0.20 sf
#2	Device 1	681.30'		·	Limited to weir flow at low heads
#2					
#3	Device 1	680.80'	0.250 in/hr Exf		
			Conductivity to	Groundwater E	Elevation = 670.00'

Primary OutFlow Max=0.80 cfs @ 12.73 hrs HW=681.54' (Free Discharge)

-1=6" pipe (Passes 0.80 cfs of 1.07 cfs potential flow)


-2=Grate (Weir Controls 0.80 cfs @ 1.60 fps)

-3=Exfiltration (Controls 0.00 cfs)

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 44

Pond 2P: Bioretention Area

Printed 12/18/2025

HydroCAD® 10.20-2h s/n 05019 © 2024 HydroCAD Software Solutions LLC

Page 45

Summary for Pond 4P: Bioretention Area

10,890 sf, 40.00% Impervious, Inflow Depth = 3.78" for 100-Year event Inflow Area =

Inflow 1.50 cfs @ 11.99 hrs, Volume= 3.434 cf

1.43 cfs @ 12.01 hrs, Volume= 1.43 cfs @ 12.01 hrs, Volume= Outflow 3,434 cf, Atten= 4%, Lag= 1.3 min

Primary = 3,434 cf

Routed to Pond 1P: (new Pond)

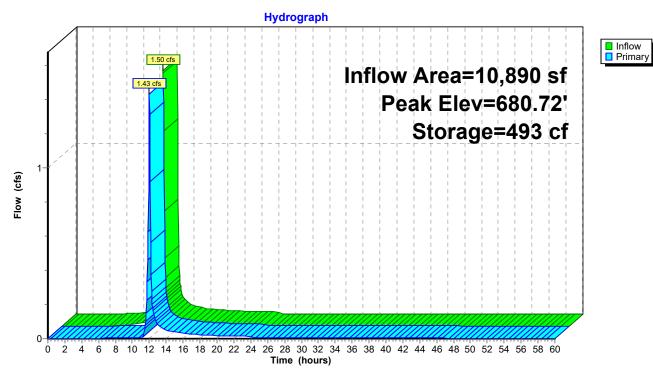
Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 680.72' @ 12.01 hrs Surf.Area= 858 sf Storage= 493 cf

Plug-Flow detention time= 141.1 min calculated for 3,431 cf (100% of inflow)

Center-of-Mass det. time= 142.2 min (940.2 - 798.0)

Volume	Inve	ert Avail.Sto	rage Storage D	escription	
#1	680.0	0' 75	51 cf Custom S	stage Data (Pr	ismatic)Listed below (Recalc)
Elevation		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
680.0	00	510	0	0	
680.5	50	750	315	315	
681.0	00	995	436	751	
Device	Routing	Invert	Outlet Devices		
#1	Primary	677.36'	6.0" Round 6"	pipe	
,, .		000	L= 22.0' CPP,	square edge h	eadwall, Ke= 0.500
					677.30' S= 0.0027 '/' Cc= 0.900
					ooth interior, Flow Area= 0.20 sf
#2	Device 1	680.50'	8.0" Horiz. Gra	te X 2.00 C=	0.600 Limited to weir flow at low heads
#3	Device 1	680.00'	0.250 in/hr Exf ice Conductivity to		Surface area Elevation = 670.00'

Primary OutFlow Max=1.41 cfs @ 12.01 hrs HW=680.72' (Free Discharge)


-1=6" pipe (Passes 1.41 cfs of 1.50 cfs potential flow)

-2=Grate (Weir Controls 1.40 cfs @ 1.53 fps)

3=Exfiltration (Controls 0.01 cfs)

Page 46

Pond 4P: Bioretention Area

Green Infrastructure & Water Quality Calculations

Step 2 - Calculate Water Quality Volume

Is this project subject to Section 4.3 of the NYS Design Manual for Enhanced Phosphorus

Removal?

What is the nature of this construction project?

Design Point: 1
P= 1.00 inches

Enter 90% Rainfall Event as P

, <u> </u>	1.00	Calcula	te Required WQ	1		
Drainage Area Number	Contributing Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (cf)	SMP Description
1	0.40	0.25	63	0.61	889	
2	0.25	0.10	40	0.41	372	
3	1.75	0.70	40	0.41	2,605	
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
Total	2.40	1.05	44	0.44	3866	Required WQv

Minimum RRv

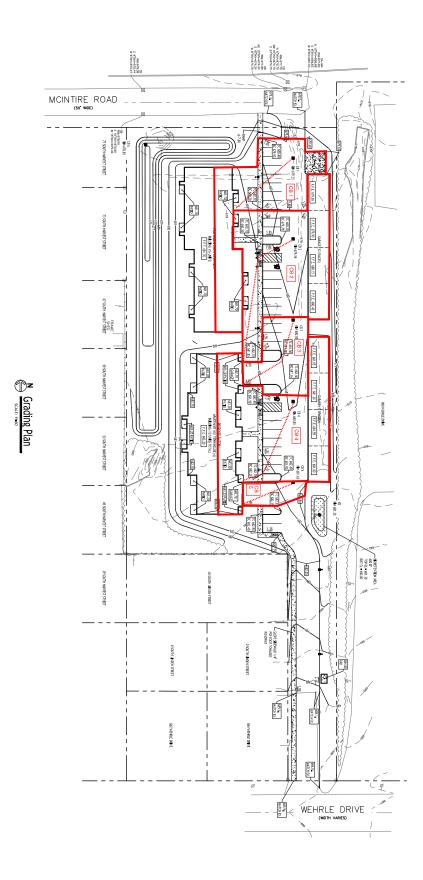
Enter the Soils Da	ta for the site	
Soil Group	Acres	S
Α		55%
В		40%
С		30%
D	2.40	20%
Total Area	2.4	
Calculate the Min	imum RRv	
S =	0.20	
Impervious =	1.05	acre
Precipitation	1	in
Rv	0.95	
Minimum RRv	724	ft3
	0.02	af

Bioretention Worksheet

(For use on HSG C or D Soils with underdrains) Af=WQv*(df)/[k*(hf+df)(tf)]

Af	Required Surface Area (ft2)		The hydraulic conductivity [ft/day], can be varied
WQv	Water Quality Volume (ft3)		depending on the properties of the soil media. Some
df	Depth of the Soil Medium (feet)	k	reported conductivity values are: Sand - 3.5 ft/day (City of Austin 1988); Peat - 2.0 ft/day (Galli 1990);
hf	Average height of water above the planter bed		Leaf Compost - 8.7 ft/day (Claytor and Schueler,
tf	Volume Through the Filter Media (days)		1996); Bioretention Soil (0.5 ft/day (Claytor &

tf Volume Through	the Filter Medi	a (days)		1990), biore	etention Soil (0.5 ft	, day (Claytor &
Design Point: 1						
Ente	r Site Data For	Drainage Are	a to be	Treated by	Practice	
Catchment Total Area Number (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description
1 0.40	0.25	0.63	0.61	889.35	1.00	
Enter Impervious Area Reduced by Disconnection of Rooftops		63%	0.61	889	< <wqv ac<br="" after="">Disconnected R</wqv>	
Enter the portion of the WQv trouted to this practice.	hat is not redu	ced for all pra	ctices		ft ³	
		Soil Inform	ation			
Soil Group	D					
Soil Infiltration Rate	0.00	in/hour	Okay			
Using Underdrains?	Yes	Okay				
	Calcula	ate the Minim	um Filte	er Area		
			V	'alue	Units	Notes
WQv				889	ft ³	
Enter Depth of Soil N	1edia	df		1.5	ft	2.5-4 ft
Enter Hydraulic Condu	ıctivity	k		0.5	ft/day	
Enter Average Height of		hf		0.5	ft	6 inches max.
Enter Filter Time	<u> </u>	tf		2	days	
Required Filter Ar		Af		667	ft ²	
	Determi	ne Actual Bio	-Retenti	ion Area		
Filter Width	25	ft				
Filter Length	27	ft				
Filter Area	675	ft ²				
Actual Volume Provided	900	ft ³				
		ermine Runof	f Reduct	tion		
Is the Bioretention contributin another practice?	g flow to	No	Select	t Practice		
RRv	360					
RRv applied	360	ft³		10% of the ver is less.	storage provido	ed or WQv
Volume Treated	529	ft ³	This is t	-	of the WQv tha	t is not reduced in
Volume Directed	0	ft ³	This vol	ume is dire	ected another p	ractice
Sizing √	OK		Check to	be sure Are	ea provided ≥ Af	


Bioretention Worksheet

(For use on HSG C or D Soils with underdrains) Af=WQv*(df)/[k*(hf+df)(tf)]

Af	Required Surface Area (ft2)		The hydraulic conductivity [ft/day], can be varied
WQv	Water Quality Volume (ft3)		depending on the properties of the soil media. Some
df	Depth of the Soil Medium (feet)	k	reported conductivity values are: Sand - 3.5 ft/day (City of Austin 1988); Peat - 2.0 ft/day (Galli 1990);
hf	Average height of water above the planter bed		Leaf Compost - 8.7 ft/day (Claytor and Schueler,
tf	Volume Through the Filter Media (days)		1996); Bioretention Soil (0.5 ft/day (Claytor &

<i>tf</i> Volume Through	the Filter Media	a (days)		1996); Biore	tention Soll (0.5 ft	day (Claytol &
Design Point: 1]					
Enter	Site Data For	Drainage Are	a to be	Treated by	Practice	
Catchment Total Area Number (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description
2 0.25	0.10	0.40	0.41	372.08	1.00	
Enter Impervious Area Reduced by Disconnection of Rooftops		40%	0.41	372	< <wqv ac<br="" after="">Disconnected R</wqv>	
Enter the portion of the WQv throuted to this practice.	hat is not redu	ced for all pra	ctices		ft ³	
		Soil Inform	ation			
Soil Group	D					
Soil Infiltration Rate	0.00	in/hour	Okay			
Using Underdrains?	Yes	Okay				
	Calcula	ite the Minim	um Filte	er Area		
			V	'alue	Units	Notes
WQv			3	372	ft ³	
Enter Depth of Soil M	edia	df		1.5	ft	2.5-4 ft
Enter Hydraulic Condu	ctivity	k		0.5	ft/day	
Enter Average Height of	Ponding	hf		0.5	ft	6 inches max.
Enter Filter Time		tf		2	days	
Required Filter Are		Af		279	ft ²	
	Determi	ne Actual Bio	-Retenti	ion Area		
Filter Width	75	ft				
Filter Length	10	ft				
Filter Area	750	ft ²				
Actual Volume Provided	1000	ft ³				
	Dete	ermine Runof	f Reduc	tion	1	
Is the Bioretention contributing	g flow to	No	Select	Practice		
another practice?	1					
RRv	400					
RRv applied	372	ft³	whiche	ver is less.	storage provide	
Volume Treated	0	ft ³	This is t the pra	-	of the WQv tha	t is not reduced in
Volume Directed	0	ft ³	This vol	ume is dire	ected another p	ractice
Sizing V	OK		Check to	be sure Are	ea provided ≥ Af	

Appendix C Storm Pipe Sizing Calculations

Grading Plan

Date 9/22/25

Date C Wood

C 2000

Revolved Nov. 72-4/45

Multi-Family Development 0, 46-84 S Linden Street Amherst, NY

CARMINAWOOD DESIGN

CB 1	CB 2	CB 3	CB 4	CB 5	,	2	
	? to	to	to	5 to	נומכנמ	1	
to POND	CB 1	CB 2	CB 3	CB 4	Structure CB/ MIL	CB/ML	
0.918	0.717	0.444	0.347	0.037	Runoff Area (acres)		
0.128	0.103	0.041	0.034	0.000	Green Space (acres)	Runoff Areas (acres)	
0.790	0.614	0.403	0.314	0.037	Impervious area (acres) Green D Green Slope Imp. D Imp. Slope Pipe Length	s)	
				0	Green D		
				0.00	Green Slope	Overland Flow	Storm Drainage Pipe Size
				55	Imp. D	Flow	nage Pip
				1.50	Imp. Slope		oe Size
65	82	82	82		Pipe Length	Pipe Flow	
3.62	3.62	2.70	2.70		Vel.	W	
0.80	0.80	0.84	0.83	0.90	,	,	
				0.00	Green Tc		
				2.33	lmp. Tc	Tc	
0.30	0.38	0.51	0.51		Pipe Tc		
4.02	3.72	3.34	2.84	2.33	Тс		
5.50	5.50	5.50	5.50	5.50	-	-	
4.05	3.15 0.4%	2.04	1.59 0.:	0.18	۲)	
0.4%	0.4%	0.3%	0.3%	0.3%	Siope		
15" HDPE	15" HDPE	12" HDPE	12" HDPE	12" HDPE	ripe size	<u> </u>	

Manning's Equation for Circular Pipes Flowing Full

Slope(%) = 0.3 n = 0.012 hdpe n = 0.013 concrete n = 0.02 cmp

			Wetted	Hydraulic	HD	PE	CONC	CRETE	CN	ΛP
Diameter	Diameter	Area	Perimeter	Radius	Flow	Velocity	Flow	Velocity	Flow	Velocity
(ft)	(in)	(ft^2)	(ft)	(ft)	(cfs)	(ft/s)	(cfs)	(ft/s)	(cfs)	(ft/s)
0.33	4	0.1	1.05	0.08	0.11	1.30	0.10	1.20	0.07	0.78
0.5	o	0.2	1.57	0.13	0.33	1.70	0.31	1.57	0.20	1.02
0.67	œ	0.3	2.09	0.17	0.72	2.06	0.66	1.90	0.43	1.24
0.83	10	0.5	2.62	0.21	1.30	2.39	1.20	2.21	0.78	1.43
1	12	0.8	3.14	0.25	2.12	2.70	1.96	2.49	1.27	1.62
1.25	15	1.2	3.93	0.31	3.84	3.13	3.55	2.89	2.31	1.88
1.5	18	1.8	4.71	0.38	6.25	3.54	5.77	3.26	3.75	2.12
1.75	21	2.4	5.50	0.44	9.43	3.92	8.70	3.62	5.66	2.35
2	24	3.1	6.28	0.50	13.46	4.28	12.42	3.95	8.08	2.57
2.5	30	4.9	7.85	0.63	24.40	4.97	22.53	4.59	14.64	2.98
ω	36	6.1	9.04	0.67	31.57	5.21	29.14	4.81	18.94	3.13
3.5	42	9.6	11.00	0.88	59.86	6.22	55.25	5.74	35.92	3.73
4	48	12.6	12.57	1.00	85.46	6.80	78.89	6.28	51.28	4.08
4.5	54	15.9	14.14	1.13	117.00	7.36	108.00	6.79	70.20	4.41
Ŋ	60	19.6	15.71	1.25	154.95	7.89	143.03	7.28	92.97	4.74
တ	72	28.3	18.85	1.50	251.97	8.91	232.59	8.23	151.18	5.35
7	84	38.5	21.99	1.75	380.08	9.88	350.84	9.12	228.05	5.93
8	96	50.3	25.13	2.00	542.65	10.80	500.91	9.97	325.59	6.48

Manning's Equation for Circular Pipes Flowing Full

Slope(%) = 0.4 n = 0.012 hdpe n = 0.013 concrete n = 0.02 cmp

			Wetted	Hydraulic	H	PE	CONC	RETE	CI	MP
Diameter	Diameter	Area	Perimeter	Radius	Flow	Velocity	Flow	Velocity	Flow	Velocity
(ft)	(in)	(ft^2)	(ft)	(ft)	(cfs)	(ft/s)	(cfs)	(ft/s)	(cfs)	(ft/s)
0.33	4	0.1	1.05	80.0	0.13	1.50	0.12	1.38	0.08	0.90
0.5	တ	0.2	1.57	0.13	0.39	1.96	0.36	1.81	0.23	1.18
0.67	∞	0.3	2.09	0.17	0.83	2.38	0.77	2.20	0.50	1.43
0.83	10	0.5	2.62	0.21	1.51	2.76	1.39	2.55	0.90	1.66
_	12	0.8	3.14	0.25	2.45	3.12	2.26	2.88	1.47	1.87
1.25	15	1.2	3.93	0.31	4.44	3.62	4.10	3.34	2.66	2.17
1.5	18	1.8	4.71	0.38	7.22	4.08	6.66	3.77	4.33	2.45
1.75	21	2.4	5.50	0.44	10.89	4.53	10.05	4.18	6.53	2.72
2	24	<u>ω</u>	6.28	0.50	15.54	4.95	14.35	4.57	9.33	2.97
2.5	30	4.9	7.85	0.63	28.18	5.74	26.01	5.30	16.91	3.44
ω	36	6.1	9.04	0.67	36.45	6.02	33.65	5.55	21.87	3.61
3.5	42	9.6	11.00	0.88	69.12	7.18	63.80	6.63	41.47	4.31
4	48	12.6	12.57	1.00	98.68	7.85	91.09	7.25	59.21	4.71
4.5	54	15.9	14.14	1.13	135.10	8.49	124.71	7.84	81.06	5.10
Ŋ	60	19.6	15.71	1.25	178.93	9.11	165.16	8.41	107.36	5.47
o	72	28.3	18.85	1.50	290.95	10.29	268.57	9.50	174.57	6.17
7	84	38.5	21.99	1.75	438.88	11.40	405.12	10.53	263.33	6.84
œ	96	50.3	25.13	2.00	626.60	12.47	578.40	11.51	375.96	7.48