SECOND REVISED DRAFT GENERIC ENVIRONMENTAL IMPACT STATEMENT

FOR THE

WESTWOOD NEIGHBORHOOD October 2015

A Traditional Neighborhood in the heart of Amherst.

Project Site located at 772 North Forest Road, and 385 and 391 Maple Road Town of Amherst, Erie County, New York

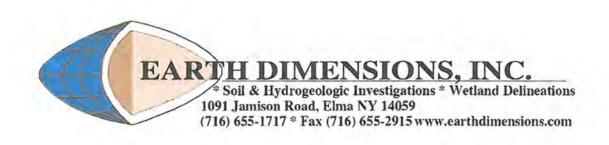
APPENDIX I Site Assessment Reports, Studies, & Correspondences

LEAD AGENCY:

TOWN OF AMHERST TOWN BOARD 5583 Main Street Williamsville, New York 14221 Mr. Eric W. Gillert, AICP, Planning Director Telephone: (716) 631-7051

PREPARED BY:

MENSCH CAPITAL PARTNERS, LLC – PROJECT SPONSOR 5477 Main Street Williamsville, New York 14221 Mr. Andrew J. Shaevel – (716) 580-3133 Mr. Brad A. Packard, AICP - (716) 631-8000 Mr. Sean W. Hopkins, Esq. – (716) 510-4338 Wetland Delineation Report


for

Westwood Country Club 772 North Forest Road

Town of Amherst Erie County, New York

for

Mencsh Capital Partners, LLC

September 26, 2012 EDI Project Code: W1I09b REPORT SUMMARIZING THE RESULTS OF A WETLAND DELINEATION SURVEY OF

Westwood Country Club

Prepared for Submission to

U.S. ARMY CORPS OF ENGINEERS 1776 NIAGARA STREET BUFFALO, NEW YORK 14207

Prepared by

EARTH DIMENSIONS, INC. 1091 JAMISON ROAD ELMA, NEW YORK 14059

for

MENCSH CAPITAL PARTNERS, LLC 350 ESSJAY ROAD WILLIAMSVILLE, NY 14221

DATE PREPARED

September 26, 2012

Project Code: W1109b

PROJECT INFORMATION

Project Name	Westwood Country Club
Street Address	
SBL	
Town	Amherst
County	Erie
State	
Latitude/Longitude (NAD83)	
Investigation Area	
USGS 7.5 Minute Topographical Map	
Consultant	Earth Dimensions, Inc.
	1091 Jamison Road
	Elma, New York 14059
Point of Contact	Scott Livingstone
	(716) 655-1717
Engineer	
Property Owner	Forest Road Corporation
Waterway	
Hydrologic Unit Code	
Authority	Section 404
Permit/ Letter Being Requested	Jurisdictional Determination

ACKNOWLEDGMENTS

Mencsh Capital Partners, LLC has retained Earth Dimensions, Inc. (EDI) to complete a wetland delineation study for the Westwood Country Club located in the Town of Amherst, County of Erie, and State of New York. EDI would like to thank Copy Market, Inc. for providing the duplicating and binding services.

Duplicated onto recycled paper

EXECUTIVE SUMMARY

Mencsh Capital Partners, LLC has proposed the development of a 171± acre site known as Westwood Country Club, in the Town of Amherst, County of Erie, and State of New York. Mencsh Capital Partners, LLC has retained Earth Dimensions, Inc. (EDI) to complete a wetland delineation report that would allow the U.S. Army Corps of Engineers (Corps) and New York State Department of Environmental Conservation (NYSDEC) to determine their jurisdictional authority over the investigation area, pursuant to Section 404 of the Clean Water Act and Article 24 (Freshwater Wetlands) of the New York State Environmental Conservation Law.

A preliminary review of available information pertaining to vegetation, soils, and hydrology in the project area was implemented prior to conducting a field investigation at the site. Sources of information included the United States Geological Survey (USGS), Natural Resources Conservation Service (NRCS), National Wetland Inventory (NWI), and NYSDEC Freshwater Wetland maps. The USGS, NRCS and NWI maps indicate the potential for wetlands under federal jurisdiction.

EDI applied methodology specified by the Corps of Engineers Wetlands Delineation Manual (January 1987) and Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (October 2009) to perform a delineation of Federal jurisdictional wetlands within the site. EDI identified eleven (11) wetland, pond and creek areas totaling 7.417± acres and within the investigation area. The identification number of the wetlands, their acreage and boundary flags are as follows:

Geographic Center (NAD83) Bo		Boundary Flags	Total Acreage	Wetland/Stream Type	Jurisdictional		
Wetland/Stream Identification #	Longitude	Latitude		On-Site/Line ar feet		Determination	
Wetland 1	78.77460	.77460 42.99055 W1-1 through W1-9		0.309±	Hardwood Swamp (PFO)	Isolated	
Wetland 2	78.77410	42.98904	W2-1 through W2-6	0.229±	Scrub-Shrub Marsh (PSS)	Isolated	
Wetland 3	78,77364	42.98960	W3-1 through W3-19	0.601±	Open Water (OW)	Isolated	
Wetland 4	78.77182	42.98920	W4-1 through W4-12	1.02±	Open Water (OW)	Isolated	
Wetland 5	78.77415	42.98770	W5-1 through 0.660± W5-22		Hardwood Swamp (PFO)	Isolated	
Wetland 6	78.77503	42.98676	W6-1 through 0.915± W6-14		Open Water (OW)	Isolated	
Wetland 7	78.77296	42.98952	W7-1 through W7-4	0.052±	Emergent Marsh (PEM)	Isolated	
Wetland 8	78.77297	42.98551	W8-1 through W8-9	0.173±	Emergent Marsh (PEM)	Isolated	
Wetland 9	78.77216	42.97896	W9-1 through 0.160± W9-12		Open Water (OW)	Isolated	
Wetland 10	78.77383	42.98394	W10-1 through W10-6	0.058±	Hardwood Swamp (PFO)	Isolated	
Wetland 11	78.76900	42.98599	W11-1 through W11-45	3.24±	Riverine	Jurisdictiona	
	Total Wetla	nd Acreage:	·	7.417 ±	15		

TABLE 1: Wetlands & Waterways Summary

TABLE OF CONTENTS

Project Informationi
Acknowledgements
Executive Summary
Table of Contentsv
List of Figures
List of Attachments
Section I: Introduction
Section II: Site Description
Section III: Preliminary Data Review
A. Summary of Findings
USGS 7.5 Minute Topographical Map
USFWS National Wetlands Inventory Map
Natural Resources Conservation Service Soil Survey Map4
NYSDEC Freshwater Wetlands Maps6
B. Results of Agency Information Review
Section IV: Field Investigation Procedures7
Section V: Results and Conclusions
Section VI: Recommendations

LIST OF FIGURES

Figure 1	USGS 7.5 Minute Topographical Map
Figure 2	USFWS National Wetlands Inventory Map
Figure 3	
Figure 4	NYSDEC Freshwater Wetlands Map
Figure 5	
Figure 6	
Figure 7	Drainage Map

LIST OF ATTACHMENTS

Figures	Attachment A
	Attachment B
Aerial Photograph	Attachment C
	Attachment D
	Attachment E
d Investigation and Report Preparation Personnel	Attachment F

SECTION I

Mencsh Capital Partners, LLC has proposed the development of a 171± acre parcel known as the Westwood Country Club in the Town of Amherst, County of Erie, and State of New York. The project has been given the name Westwood Country Club and is located on USGS 7.5 minute quadrangle map indexed as Buffalo NE/2002 DeLorme (Figure 1).

Mencsh Capital Partners, LLC has retained Earth Dimensions, Inc. (EDI) to complete a wetland delineation study at this site. The investigation was designed to facilitate a determination of the extent of U.S. Army Corps of Engineers (USACE) and New York State Department of Environmental Conservation (NYSDEC) jurisdiction over the project area pursuant to Section 404 of the Clean Water Act and Article 24 (Freshwater Wetlands) of the New York State Environmental Conservation Law.

EDI has performed a wetland delineation study at the site under guidelines specified by the *Corps of Engineers Wetlands Delineation Manual*, dated January 1987 (referred to hereafter as the Corps Manual) and the *Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region* (referred to hereafter as the Northcentral and Northeast Regional Supplement). The purpose of this report is to present EDI's methods, results, conclusions and recommendations with respect to the Westwood Country Club project site.

SECTION II SITE DESCRIPTION

Westwood Country Club is comprised of an irregular shaped parcel adjacent to the west of North Forest Road. It is bound to the south by Sheridan Drive, and to the southwest by Frankhauser Road. Ellicott Creek flows along a portion of the eastern boundary. The investigation area has a total acreage of 171± acres and is outlined on Figure 1 and depicted on the Wetland Delineation Map included in Attachment A (Figure 6).

The natural topography of Westwood Country Club is flat to gently sloping. The majority of the site consists of a maintained gold course. An area in the south east portion of the site consists of various buildings, including a clubhouse, pool, tennis courts, and parking lots. The undeveloped uplands within the investigation area consist of mown lawn, successional old field, successional shrubland, and successional northern hardwood communities. The wetland/pond/stream areas were found to consist of eutrophic pond, confined river, shallow emergent marsh, shrub-swamp and hardwood swamp communities. The vegetative community of the investigation area is described according to *Ecological Communities of New York State* (Edinger et al. 2002).

SECTION III

PRELIMINARY DATA REVIEW

A. SUMMARY OF FINDINGS

1.

Several sources of information may be reviewed to facilitate the completion of a wetland delineation study. In some cases it is even possible to make a preliminary office wetland determination based upon available vegetation, soils, and hydrologic information for a project area.

EDI completed a preliminary review of several data sources at the onset of this study. The results of the review are summarized as follows:

- USGS 7.5 Minute Topographical Map Figure 1 depicts Westwood Country Club on the Buffalo NE/2002 DeLorme quadrangle map. The figure depicts the flat to gently sloping topography of the site. Ellicott Creek is depicted along the eastern property line of the site.
- <u>USFWS National Wetlands Inventory Map</u>
 The National Wetlands Inventory (NWI) map obtained from the USFWS Wetland Mapper http://www.fws.gov/wetlands/Data/Mapper.html displays four (4)
 wetlands labeled as PUBHx*and R2UBH** within the investigation area. The
 wetlands are decoded as:
 *[P] Palustrine,[UB] Unconsolidated bottom,[H] Permanently flooded,[x]
 Excavated

**[R] Riverine, [2] Intertidal, [UB] Unconsolidated bottom, [H] Permanently flooded

3. Natural Resources Conservation Service Soils Map

Figure 3 presents the project area outlined on a copy of the Erie County Soil Survey map from the National Cooperative Soil Survey. As shown on that figure, the site has the following soil types:

Soil Conservation Service Legend

Designation	Description	Hydric Soil/ Inclusions?
CrA	Claverack Loamy Fine Sand 0 to 3 percent slopes	Inclusions Unlikely
Cv	Cosad Loamy Fine Sand	Inclusions Possible
La	Lakemont Silt Loam	Hydric Soils
Öd	Odessa Silt Loam	Inclusions Possible
SaA	Schoharie Silt Loam 0 to 3 percent slopes	Inclusions Unlikely
SaB	Schoharie Silt Loam 3 to 8 percent slopes	Inclusions Unlikely
Те	Teel Silt Loam	Inclusions Possible
Ut	Urban land-Odessa Complex	Inclusions Unlikely

<u>Claverack Loamy Fine Sand</u>: The Claverack series consists of very deep, moderately well drained soils formed in sandy deposits that overlie clayey lacustrine sediments. They are nearly level to sloping soils in shallow deltas on lake plains. Slope ranges from 0 to 15 percent. Mean annual temperature is 48 degrees F. and mean annual precipitation is 40 inches.

<u>Cosad Loamy Fine Sand</u>: The Cosad series consists of very deep, somewhat poorly drained soils formed in sandy deposits that overlie clayey lacustrine sediments. They are nearly level soils on lake plains. Slope ranges from 0 to 8 percent. Mean annual temperature is 48 degrees F. and mean annual precipitation is 40 inches.

Lakemont silt loam: The Lakemont series consists of deep, poorly drained and very poorly drained soils of lake plains. They are nearly level soils formed in very slowly permeable reddish colored clayey lacustrine sediments. Slope ranges from 0 to 3 percent. Permeability is moderately slow in the surface and very slow in the subsoil sand substratum. Mean annual temperature is about 48° and mean annual precipitation is about 34 inches.

Odessa Silt Loam: The Odessa series consists of very deep, somewhat poorly drained soils formed in clayey lacustrine deposits. These soils are in moderately low areas on lake plains. Permeability is moderately slow in the surface layer and slow or very slow in the subsoil and substratum. Slope ranges from 0 to 20 percent. Mean annual temperature is 48 degrees F., and mean annual precipitation is 34 inches.

<u>Schoharie Silt Loam</u>: The Schoharie series consists of very deep, moderately well drained soils formed in clayey lacustrine sediments. They are on glacial lake plains and uplands mantled with lake sediments. Saturated hydraulic conductivity is moderately high or high in the mineral surface and subsurface and low through moderately high in the subsoil and substratum. Slope ranges from 0 through 60 percent. Mean annual temperature is 48 degrees F, and mean annual precipitation is 39 inches.

<u>Teel Silt Loam</u>: The Teel series consists of very deep, moderately well drained soils on floodplains. They formed in nearly level, silty alluvial deposits. Permeability is moderate throughout the solum. Slope ranges from 0 to 3 percent. Mean annual temperature is 49 degrees F, and mean annual precipitation is 37 inches.

<u>Urban land</u>: This complex consists of nearly level areas of Urban land and somewhat poorly drained Odessa soils. The complex is on relatively flat landscapes in the city of Buffalo and in metropolitan areas. Slope ranges from 0 to 3 percent. Mean annual temperature is about 48° and mean annual precipitation is about 34 inches.

The U.S. Department of Agriculture's National Technical Committee for Hydric Soils Criteria has developed a list of soils that often display hydric soil characteristics. Hydric soil typically forms in places of the landscape where surface water periodically collects for some time and/or where groundwater discharges sufficient to create waterlogged or anaerobic soils. Such anaerobic soils can support the growth and survival of hydrophytic vegetation that is tolerant of such conditions. Lakemont is a hydric and therefore may support wetland vegetation. Wetland hydrologic conditions, hydric soils, and hydrophytic vegetation are the three criteria of a wetland.

 <u>NYSDEC Freshwater Wetlands Map</u> The NYSDEC Freshwater Wetlands map obtained from the online NYSDEC Environmental Resource Mapper displays no state jurisdictional wetlands within or adjacent to the investigation area.

B. RESULTS OF AGENCY INFORMATION REVIEW

The preliminary data review revealed that the Corps may have jurisdiction over wetlands at the project location. The evidence consisted of the depiction of several wetlands and water features on the NWI map, hydric soils and soils with possible inclusions depicted within the project area as shown on the NRCS map (Figure 3). Therefore, it was considered necessary to perform a field investigation at the site in order to confirm the presence of federal and state protected wetlands. The methods specified in the *Corps of Engineers Wetlands Delineation Manual* (January 1987) and *Northcentral and Northeast Regional Supplement* (October 2009) were employed during the field investigation. Procedures, results, and conclusions of the wetland delineation study are presented in the remainder of this report.

SECTION IV FIELD INVESTIGATION PROCEDURES

Step 1

EDI applied methodology specified by the 1987 Corps of Engineers Wetlands Delineation Manual and Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region to perform a delineation of Federal jurisdictional wetlands within the site. EDI used the Level 2 Routine Determination method (on-site inspection necessary) since insufficient information was available for making a determination for the entire project area. This methodology is consistent with Part IV, Section D of the Corps Manual.

Step 2

EDI's initial evaluation of the project area revealed that no atypical situations existed. If an atypical situation had existed, EDI would have used methodology outlined in Part IV, Section F of the Corps manual and/or Section 5 of the *Northcentral and Northeast Supplement*.

Step 3

EDI made the determination that normal environmental conditions were present, as the area was not lacking hydrophytic vegetation or hydrologic indicators due to annual, seasonal or long-term fluctuations in precipitation, surface water, or groundwater levels. The *Northcentral and Northeast Supplement* defines the growing season as beginning when one of the following indicators of biological activity are evident in a given year: (1) above-ground growth and development of vascular plants and/or (2) soil temperature measured at 12" below ground surface reaches 41°F. The end of the growing season is defined as the point at which deciduous species lose their leaves or the last herbaceous plants cease flowering and their leaves become dry or brown, whichever comes latest. Based on this definition, the field work was performed during the growing season. The field work was conducted on September 17, 2012 and September 24, 2012.

EARTH DIMENSIONS, INC.

7

Step 4

In order to accurately identify the limits of various vegetative communities and extent of wetlands on-site, a routine determination method was used. As depicted in Attachment A and included in Attachment B, eleven (11) data points were used to characterize the site.

Step 5

The plant community inhabiting each observation point was characterized in accordance with methods specified in the Northcentral and Northeast Regional Supplement. Dominant plant species were identified within four vegetative strata (i.e. herb, sapling/shrub, tree and liana (woody vines) at each sampling point. The Northcentral and Northeast Regional Supplement defines the vegetative strata in the following manner:

<u>Herb</u> – A non-woody individual of a macrophytic species. Seedlings of woody plants (including vines) that are less than 3.28 feet in height are considered to be herbs.

<u>Sapling/Shrub</u> – A layer of vegetation composed of woody plants < 3.0 inches in diameter at breast height but greater than 3.28 feet in height, exclusive of woody vines.

<u>Tree</u> – A woody plant > 3.0 inches in diameter at breast height, regardless of height (exclusive of woody vines)

Liana – A layer of vegetation in forested plant communities that consist of woody vines greater than 3.28 feet in height.

As outlined in the Northcentral and Northeast Regional Supplement, the quadrant sizes used for the vegetative strata were (i) a five-foot radius for herbs; (ii) a fifteen-foot radius for saplings and shrubs; and (iii) a 30-foot radius for trees and woody vines. Dominant plant species were identified within four vegetative strata (i.e. herb, sapling/shrub, tree and liana (woody vines) at each sampling point. The Corps Manual defines the vegetative strata in the following manner: <u>Herb</u> – A non-woody individual of a macrophytic species. Seedlings of woody plants (including vines) that are less than 3.2 feet in height are considered to be herbs.

<u>Sapling/Shrub</u> – A layer of vegetation composed of woody plants < 3.0 inches in diameter at breast height but greater than 3.2 feet in height, exclusive of woody vines.

<u>Tree</u> – A woody plant > 3.0 inches in diameter at breast height, regardless of height (exclusive of woody vines)

Liana - A layer of vegetation in forested plant communities that consist of woody vines.

As outlined in the manual, the quadrant sizes used for the vegetative strata were (i) a 3.28-foot radius for herbs; (ii) a ten-foot radius for saplings/shrubs and woody vines; and (iii) a 30-foot radius for trees. Dominant plant species were estimated using aerial coverage methods. Dominant species are defined in the Corps Manual as the most abundant plant species that when ranked in descending order of abundance and cumulatively totaled immediately exceed 50 percent of the total dominance measure for the stratum, plus any additional species comprising 20 percent or more of the total dominance measure.

The wetland indicator status (OBL, FACW, FAC, FACU, or UPL) listed for each identified species by the U.S. Fish and Wildlife Service in the *National List of Plant Species that Occur in Wetlands: Northeast (Region 1)* was recorded. The U.S. Fish and Wildlife wetland indicator status listings are defined as follows:

<u>OBL</u> – Plants that occur almost always (estimated probability >99 percent) in wetlands under natural conditions, but which may also occur rarely (estimated probability < 1 percent) in nonwetlands.

<u>FACW</u> – Plants that occur usually (estimated probability >67 percent to 99 percent) in wetlands, but also occur (estimated probability 1 percent to 33 percent) in nonwetlands.

<u>FAC</u> – Plants with a similar likelihood (estimated probability 33 percent to 67 percent) of occurring in both wetlands and nonwetlands.

<u>FACU</u> – Plants that occur sometimes (estimated probability 1 percent to <33 percent) in wetlands, but occur more often (estimated probability >67 percent to 99 percent) in nonwetlands. <u>UPL</u> – Plants that occur rarely (estimated probability < 1 percent) in wetlands, but occur almost always (estimated probability >99 percent) in nonwetlands under natural conditions. The plant community data was summarized on the data forms provided in the Northcentral and Northeast Regional Supplement included in this report as Attachment B.

Step 6

Plant data from each observation point were tested against the hydrophytic vegetation criterion specified in the Corps Manual and Northcentral and Northeast Regional Supplement. The Northcentral and Northeast Regional Supplement identifies a four-tiered approach for making a determination of whether or not the hydrophytic vegetation criteria is met for a sample plot. Indicator 1 (Rapid Test for Hydrophytic Vegetation) was first applied to determine if all dominant species across all strata are rated OBL and/or FACW. If Indicator 1 did not meet the hydrophytic vegetation criteria, Indicator 2 was then applied (dominance test); if greater than 50% of all plant species across all strata were rated OBL, FACW, or FAC, the hydrophytic vegetation criteria was considered met. In rare cases, when Indicators 1 and 2 did not meet the hydrophytic vegetation criteria but soils and hydrology criteria were met, Indicators 3 (Prevalence Index) and 4 (Morphological Adaptations) were used to make a final determination. All observation points that met the hydrophytic vegetation criterion were considered potential wetlands. Soils were then characterized.

Step 7

The Corps Manual specifies that soils need not be characterized (and are assumed hydric soils) at sampling points meeting the hydrophytic vegetation criterion if: (i) all dominant plant species have an indicator status of OBL, or (ii) all dominant species have an indicator status of OBL and/or FACW, and the wetland boundary is abrupt (at least one dominant OBL species must be present). All observation points sampled during this field investigation were examined directly for soil and hydrologic characteristics.

Step 8

At observation points requiring a soil evaluation, soil borings were performed by an EDI Soil Scientist using methods specified in the Northcentral and Northeast Regional Supplement. Soil pits were dug using a tile spade. Testpits were generally dug to a depth of 20 inches below ground surface. Soils were examined for any of the hydric soil indicators, as outlined in the *Field Indicators of Hydric Soils in the United States*. A determination was made as to whether or not the hydric soil criterion was met. Soils data was recorded on the data forms included in Attachment B of this report.

Step 9

EDI's Soil Scientist examined hydrologic indicators using methods specified by the Northcentral and Northeast Regional Supplement at each observation point. The wetland hydrology criterion was met if: (i) one or more primary field indicators was materially present, (ii) available hydrologic records provided necessary evidence, or (iii) two or more secondary indicators were present. Results were recorded on data forms taken from the Corps Manual and are included in this report as Attachment B.

Step 10

A wetland determination was made for every observation point. If a sample plot met the hydrophytic vegetation, hydric soil, and wetland hydrology criteria, the area was considered to be wetland.

Step 11

Based on the results of the transected data, wetland boundaries were established for each identified wetland using plain green survey ribbon numbered consecutively along each wetland boundary. As outlined in the Corps Manual, the placement of flags was based on the limits of areas where all three parameters were met. Wetland flags were labeled W1-1 through W1-9, W2-1 through W2-6, W3-1 through W3-19, W4-1 through W4-12, W5-1 through W5-22, W6-1 through W6-14, W7-1 through W7-4, W8-1 through W8-9, W9-1 through W9-12, W10-1 through W10-6 and W11-1 through W11-45.

SECTION V RESULTS AND CONCLUSIONS

Earth Dimensions, Inc. (EDI) has completed a wetland delineation study at Westwood Country Club located in the Town of Amherst, County of Erie, and State of New York. A field investigation was conducted by a Soil Scientist and a Wetland Ecologist from EDI. The wetland delineation study found eleven (11) wetlands totaling $7.417 \pm$ acres present at Westwood Country Club.

General site maps are presented in Attachment A. Figure 3 shows the soil types mapped within the property. Field examination of the soil on the site showed moderate agreement to the published NRCS soil map (Figure 3). The site consisted primarily of Odessa silt loam and Cosad loamy fine sand soils, although much of the site was previously altered in association with the construction of the golf course.

Figure 5 depicts the vegetative communities as they currently exist. The majority of the site consists of a maintained golf course and country club facilities. The undeveloped uplands within the investigation area were comprised of mown lawn, successional old field, successional shrubland and successional northern hardwood communities. The wetland/pond/stream areas were found to consist of eutrophic pond, confined river, shallow emergent marsh, shrub-swamp and hardwood swamp communities. The vegetative community of the investigation area is described according to *Ecological Communities of New York State* (Edinger et al. 2002).

No data was taken in the mown lawn community. However, species present were consistent with the community description provided by Reschke.

The successional old field community consisted of the following species: hawthorn (Crataegus spp.), gray dogwood (Cornus racemosa), green ash (Fraxinus pennsylvanica), silky dogwood (Cornus amomum), alder buckthorn (Rhamnus frangula), bebb willow (Salix bebbiana),

W1109b

Kentucky bluegrass (*Poa pratensis*), old field cinquefoil (*Potentilla simplex*), Virginia strawberry (*Fragaria virginiana*), annual ryegrass (*Lolium perenne*), timothy (*Phleum pretense*), common cinquefoil (*Potentilla simplex*), common self-heal (*Prunella vulgaris*), poverty rush (*Juncus tenuis*), winter bentgrass (*Agrostis hyemalis*), white old-field aster (*Symphyotrichum pilosus*), Canada goldenrod (*Solidago canadensis*), garden vetch (*Vicia sativa*), flat-top goldenrod (*Euthamia graminifolia*), and red maple (*Acer rubrum*).

The successional shrubland community consisted of the following species: green ash (*Fraxinus pennsylvanica*), Norway spruce (*Picea abies*), black walnut (*Juglans nigra*), box elder (*Acer negundo*), glossy buckthorn (*Frangula alnus*), American red raspberry (*Rubus ideaus*), white old-field aster (*Aster pilosus*), Canada goldenrod (*Solidago canadensis*), Canada thistle (*Cirsium canadensis*), curly dock (*Rumex crispus*), dames rocket (*Hesperis matronalis*), stinging nettle (*Urtica dioica*), common motherwort (*Leonurus cardiaca*), climbing nightshade (*Solanum dulcamera*), white vervain (*Verbena urticifolia*), Fuller's teasel (*Dipsacus sylvestris*), and summer grape (*Vitis aestivalis*).

The successional northern hardwood community consisted of the following species: green ash (*Fraxinus pennsylvanica*), American basswood (*Tilia americana*), red oak (*Quercus rubra*), pin oak (*Quercus palustris*), eastern cottonwood (*Populus deltoides*), American elm (*Ulmus americana*), red maple (*Acer rubrum*), hawthorn (*Crataegus spp.*), black willow (*Salix nigra*), black cherry (*Prunus serotina*), black walnut (*Juglans nigra*), box elder (*Acer negundo*), common buckthorn (*Rhamnus cathartica*), glossy buckthorn (*Frangula alnus*), tatarian honeysuckle (*Lonicera tatarica*), multiflora rose (*Rosa multiflora*), Allegheny blackberry (*Rubus allegheniensis*), dames rocket (*Hesperis matronalis*), white snakeroot (*Ageratina altissima*), Virginia creeper (*Parthenocissus quinquefolia*), poison ivy (*Toxicodendron radicans*), and summer grape (*Vitis aestivalis*).

No data was taken in the eutrophic pond or confined river communities. However, species present were consistent with the community description provided by Reschke.

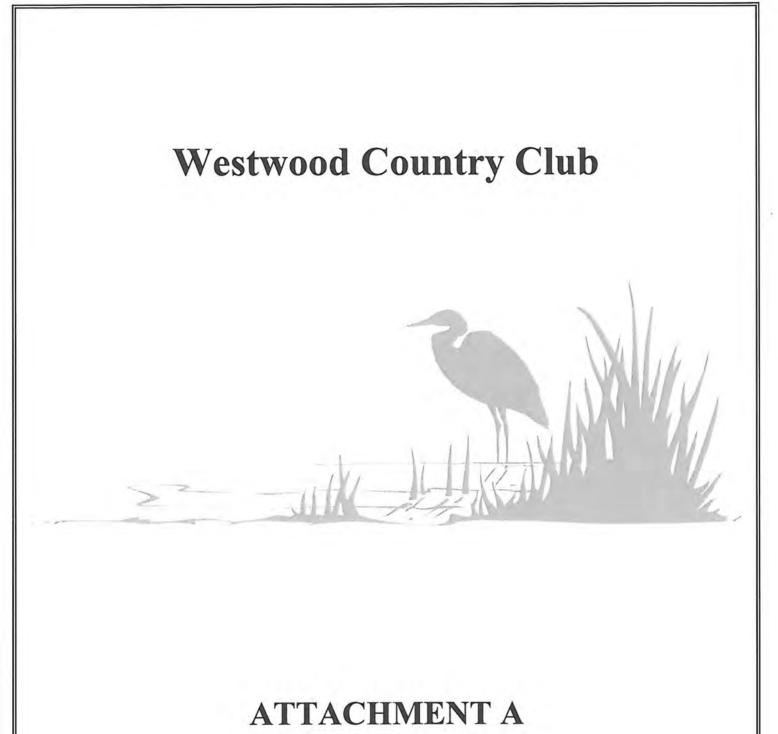
The shallow emergent marsh community consisted of the following species: green ash (Fraxinus pennsylvanica), pin oak (Quercus palustris), redosier dogwood (Cornus sericea), red maple (Acer rubrum), calico aster (Symphyotrichum lateriflorum), white panicle aster (Symphyotrichum lanceolatum), purple loosestrife (Lythrum salicaria), sedge (Carex spp.), and flat-top goldenrod (Euthamia gaminifolia).

The shrub-swamp community consisted of the following species: pin oak (Quercus palustris), green ash (Fraxinus pennsylvanica), redosier dogwood (Cornus sericea), red maple (Acer rubrum), glossy buckthorn (Frangula alnus), silver maple (Acer saccharinum), broom sedge (Carex scoparia), purple loosestrife (Lythrum salicaria), soft rush (Juncus effusus), woolgrass (Scirpus cyperinus), fox sedge (Carex vulpinoidea), green bulrush (Scirpus atrovirens), boneset (Eupatorium perfoliatum), and flat-top goldenrod (Euthamia graminifolia).

The hardwood swamp community consisted of the following species: pin oak (Quercus palustris), green ash (Fraxinus pennsylvanica), red oak (Quercus rubra), eastern cottonwood (Populus deltoides), American elm (Ulmus americana), tatarian honeysuckle (Lonicera tatarica), calico aster (Symphyotrichum lateriflorum), fowl mannagrass (Glyceria striata), broom sedge (Carex scoparia), and sweet woodreed (Cinna arundinacea).

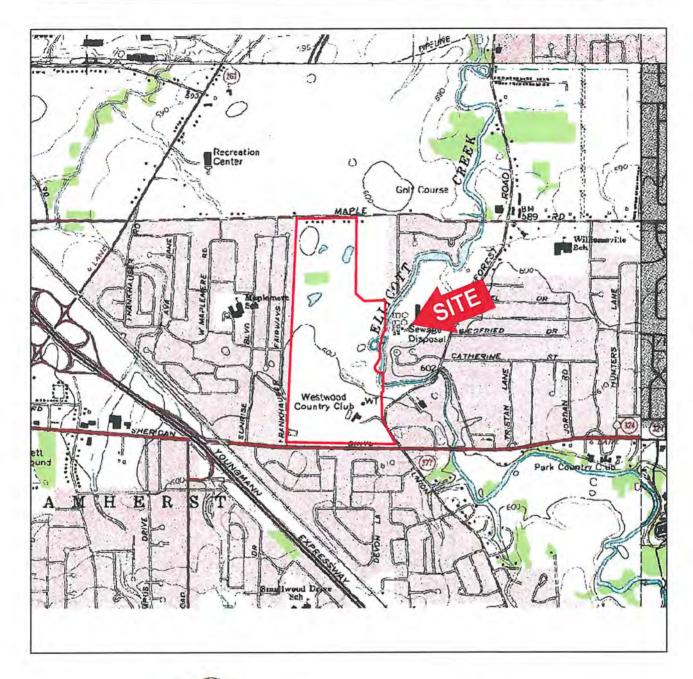
Hydrology is generally highly variable during a field investigation and accurate examinations of the landscape must be conducted to assure an accurate delineation.

As noted on Figure 7 (Site Drainage map), Ellicott Creek, a traditionally navigable waterway, flows north along the east side of the investigation area.


A map which depicts the site boundaries and the location of all observation points established during the field survey is included as Figure 6 in Attachment A of this report. Data forms are included as Attachment B. Attachment C consists of an aerial photograph of the site. Attachment D includes representative photographs of the project area. Attachment E notes the

references used during the preparation of this report and during the field investigation. Attachment F provides the names, addresses and phone numbers of the survey personnel involved in the wetland delineation study.

SECTION VI RECOMMENDATIONS


Eleven (11) wetland/pond/stream areas were identified during the course of a field investigation based upon the three parameter technique (vegetation, soils, and hydrology) outlined in the Corps Manual and *Northcentral and Northeast Regional Supplement*. It is EDI's professional opinion that Wetlands 1 through 10 are not connected to waters of the U.S. and would therefore be considered isolated. Wetland 11 (Ellicott Creek), however, is a traditionally navigable waterway and is regulated by the USACE. In addition, the creek is a NYSDEC Class B stream regulated under Article 15 of the New York State Conservation Law. NYSDEC and USACE approaches their regulatory analyses by first considering avoidance of wetlands and minimization of wetland losses. EDI recommends the following:

- Submit this report to USACE with a request for a wetland boundary confirmation and jurisdictional determination.
- (2) If <u>no impacts</u> are proposed to federally regulated wetlands or Ellicott Creek based on the outcome of the jurisdictional determination, it is the professional opinion of EDI that the project may proceed without the need for a Section 404 Permit.
- (3) If any jurisdictional wetland impacts are proposed, it is EDI's recommendation that a Joint Application for Permit and supporting documentation be submitted to the USACE and NYSDEC.

Figures

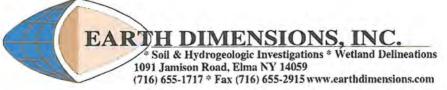


Figure 1:

USGS 7.5 Minute Topographical Map Buffalo NE Quadrangle/ 2002 DeLorme

Westwood Country Club Town of Amherst, Erie County, New York

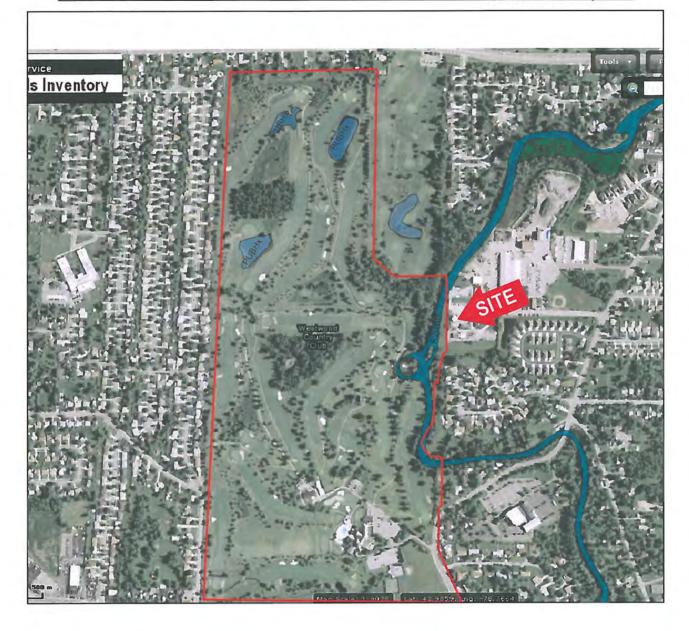
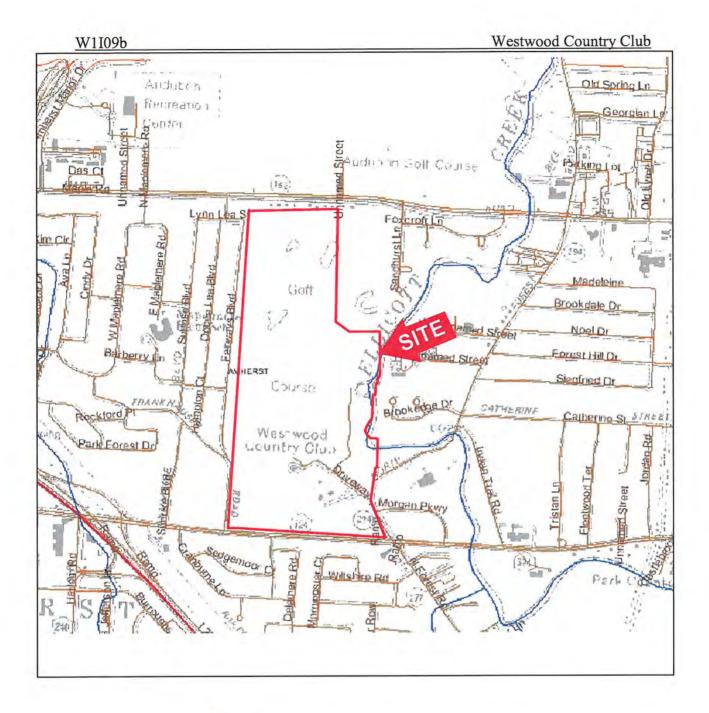


Figure 2:

<u>National Wetlands Inventory Map</u> http://www.fws.gov/wetlands/Data/Mapper.html Site visited 9/11/2012

Westwood Country Club Town of Amherst, Erie County, New York

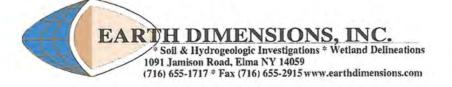
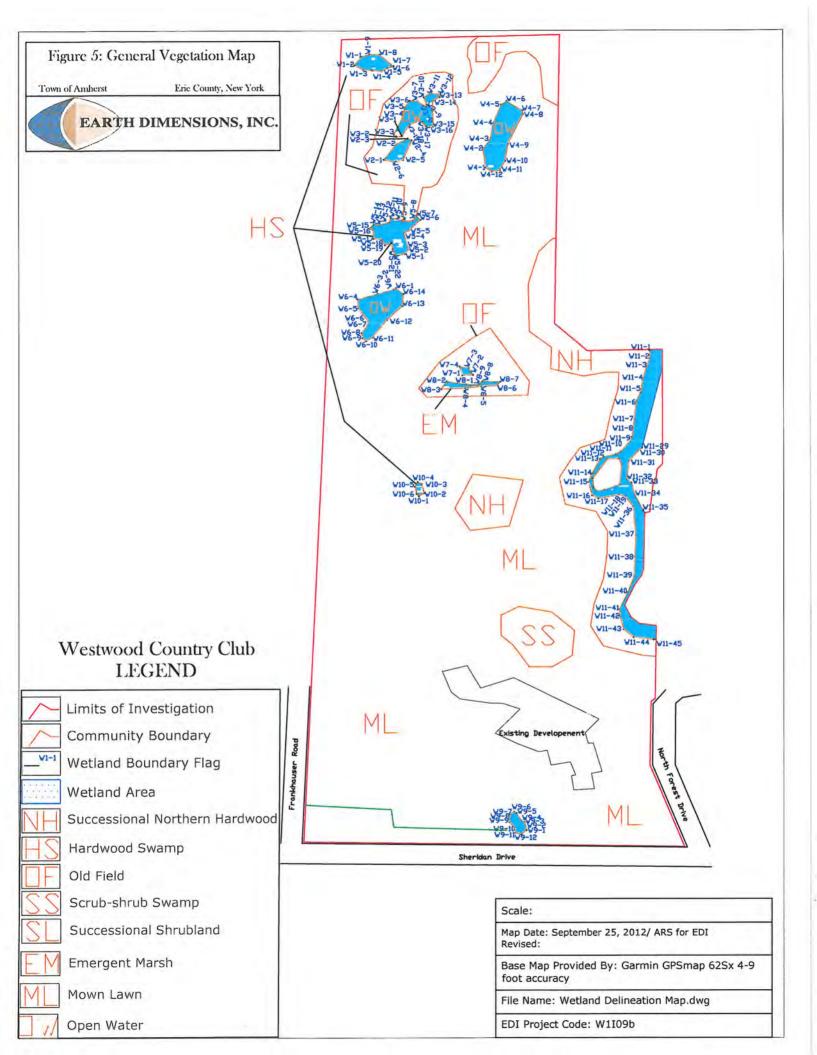

 Figure 3:
 NRCS Erie County Soil Survey Map

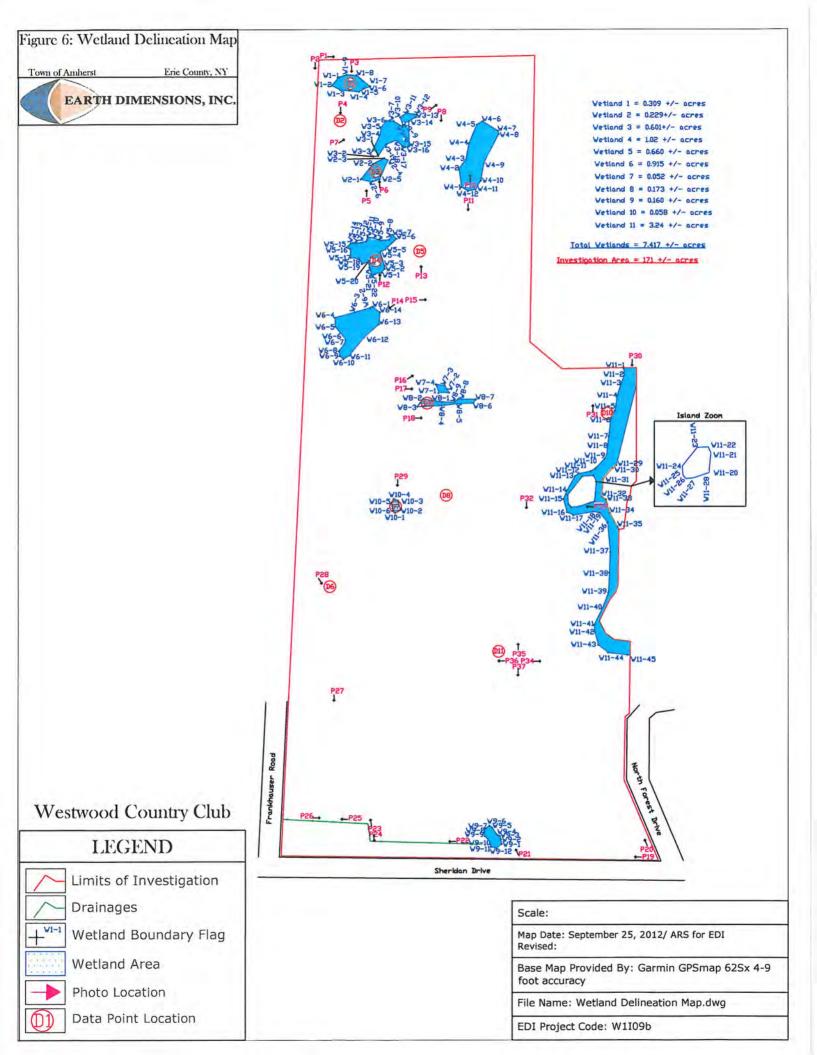
 http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

 Site visited 9/11/2012

 Westwood Country Club

 Town of Amherst, Erie County, New York


Figure 4:

NYSDEC Environmental Resource Mapper http://www.dec.ny.gov/imsmaps/ERM/Viewer.htm Site visited 9/11/2012

Westwood Country Club Town of Amherst, Erie County, New York

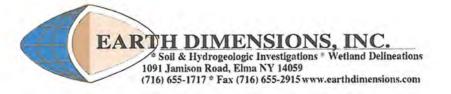
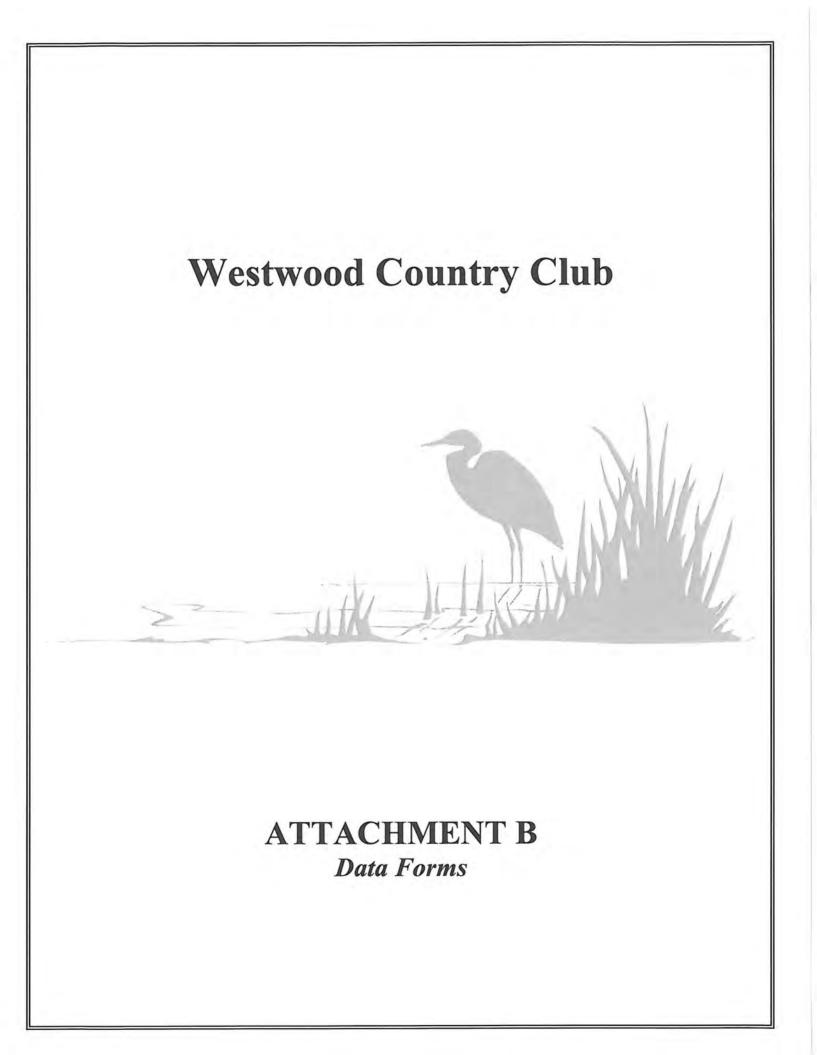



 Figure 7:
 Drainage Map http://gis1.erie.gov/GC/ErieCountyNY/default.htm

 Site visited 9/11/2012

 Westwood Country Club Town of Amherst, Erie County, New York

Proiect Code: W1109b

WETLAND DETERMINATION DATA FORM Northcentral and Northeast Region

Project/Site: Westwood Country Club - 772 North Forest	Road City/County: Amherst/Erie	CountySampling Date: September 17, 2012	
Applicant/Owner: <u>Mensch Capital Partners, LLC</u>	State:NY	Sampling Point:	
Investigator(s): Scott Livingstone & Jody Celeste	Section, Townshi	p, Range: <u>68.01-1-1</u>	
andform (hillslope, terrace, etc.):AKe/c	Local relief (conca	ave, convex, none):CONCAVE	
Slope (%): 10 Lat: 42, 99.05	Long: - 78. 74	Datum: NAD83	
	NW I classificat	ion: <u>PEM</u>	
Are climatic / hydrologic conditions on the site typical for the	his time of year? Yes X No	(If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology si	gnificantly disturbed? Yes N	o X Are "Normal Circumstances" present? Yes X No	
Are Vegetation, Soil, or Hydrology	naturally problematic? Yes N	lo X (If needed, explain any answers in Remarks.)	
SUMMARY OF FINDINGS : Attach site map showing :			
SUMMART OF FINDINGS . Attach site map showing			
Hydrophytic Vegetation Present? Yes X	No Is the Samp		
Hydric Soil Present? Yes	No within a We	etland? Yes X No	
Wetland Hydrology Present? Yes	No If yes, option	nal Wetland Site ID:/	
HYDROLOGY		Secondary Indicators (minimum of two required)	
Wetland Hydrology Indicators:	II that such A	Secondary Indicators (minimum of two required)	
Primary Indicators (minimum of one is required; check a		Surface Soil Cracks (B6)	
	Vater-Stained Leaves (B9) Iquatic Fauna (B13)	Drainage Patterns (B10) Moss Trim Lines (B16)	
	Aarl Deposits (B15)	Dry-Season W ater Table (C2)	
	lydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)	
7 -	Dxidized Rhizospheres on Living R	and the second se	
	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)	
Algal Mat or Crust (B4) F	Recent Iron Reduction in Tilled Soil	영상 전에는 이번 것 같아. 그렇게 그렇게 많은 것 요구한 것 집에서 집에 들었다. 이렇게 가지 않는 것 같아.	
	Thin Muck Surface (C7)	Shallow Aquitard (D3)	
Sparsely Vegetated Concave Surface (B8)		FAC-Neutral Test (D5)	
Field Observations: Surface Water Present? Yes No X I	enth (inches) N/A		
Water Table Present? Yes No X			
Saturation Present? Yes No Y		Wetland Hydrology Present? Yes X No	
(includes capillary fringe)	2.3.2 X 2		
Describe Recorded Data (stream gauge, monitoring we	, aerial photos, previous inspection	ns), if available:	
Remarks:			

Project Code: W1109b

EGETATION : Use scientific names of plants.				Sampling Point:
Tree Stratum (Plot size: 30') 1. Fraxinus plmnsyi Jawica 2. ACC, Instrument 3	<u>% Cover</u>	<u>Species</u>		Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW , or FAC: Total Number of Dominant Species Across All Strata: Percent of Dominant Species That Are OBL, FACW , or FAC: (B) Parcent of Dominant Species That Are OBL, FACW , or FAC: (A)
6	M M	Total C		Prevalence Index worksheet:
5 6 7 7 1. <u>JUNIUS ESTUSUE</u> 2. <u>SCICOVI CUPENIUS</u> 3. <u>SAVEN UN PHODECE</u> 4. SCICOVI AND A		_ = Total (Prevalence Index = B/A = Hydrophytic Vegetation Indicators: Rapid Test for Hydrophytic Vegetation Dominance Test is >50% Prevalence Index is < 3.0 ¹ Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain) Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5. <u>Eupinium portional and a second and a se</u>			FAGW FAGW	 Definitions of Vegetation Strata: Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft in height.
Woody Vine Stratum (Plot size:) 1.		Total Cove		Young Projssec Community Type: Shrib Hydrophytic Vegetation Present? No
Remarks: (Include photo numbers here or on a separate sh Photo # Direction	eet.) n of Phote		San Th	

11/22

Project Code: W1109b

Depth	Matrix	o ine depu	n needed to docume Red	ox Featur		commun t	ne absence of me	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-12	10TR 4/2	70	10mm 5/8	30	C	M	4:0	
		_		Ξ	Ξ			
_	_	_						
			Reduced Matrix, CS=					: PL=Pore Lining, M=Matrix.
Black Hydrog Stratifi Deplet Thick I Sandy Sandy Sandy Strippe	ol (A1) Epipedon (A2) Histic (A3) gen Sulfide (A4) ed Layers (A5) ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) Surface (S7) (LRR R, I	Soils (F19) (Redox Depr	3) urface (S9 ky Mineral ed Matrix (atrix (F3) Surface (F ark Surface) (LRR R, (F1) (LRR (F2) 56) ≩ (F7)	MLRA 149	B) Coast P 5 cm ML Dark Su Polyvalu Thin Da Iron-Mai Iron-Mai Mesic S Red Par Very Sh	ick (A10) (LRR K, L, MLRA 149B) rairie Redox (A16) (LRR K, L, R) icky Peat or Peat (S3) (LRR K, L, R) rface (S7) (LRR K, L) ie Below Surface (S8) (LRR K, L) rk Surface (S9) (LRR K, L) nganese Masses (F12) (LRR K, L, R podic (TA6) (MLRA 144A, 145, 149E ent Material (TF2) allow Dark Surface (TF12) ixplain in Remarks)
		n and wetla	nd hydrology must be p	present, un	less distur	bed or prob	lematic.	
Sestrictive L Type: Depth (inc	ayer (if observed): NONE ches): NA		-				Hydric Soil Pre	sent? Yes Y No
Depth (inc Remarks:	nes):						Hydric Soll Ple	

Project/Site: Westwood Country Club - 772 North For	est Road City/County: Amherst/E	rie CountySampling Date: September 17, 2012				
Applicant/Owner: _Mensch Capital Partners, LLC	State: NY	Sampling Point: Z				
nvestigator(s): Scott Livingstone & Jody Celeste	Section, Town	nship, Range: 68.01-1-1				
andform (hillslope, terrace, etc.): La Ke P	Control Local relief (co	oncave, convex, none):Flat				
Slope (%): Lat: 42_9677	41 Long: -78	3. 77484 Datum: NAD83				
Soil Map Unit Name: 00,055 0 4.14	loam NW I classif					
Are climatic / hydrologic conditions on the site typical f	or this time of year? Yes X	No (If no, explain in Remarks.)				
		No X Are "Normal Circumstances" present? Yes X N				
		No X (If needed, explain any answers in Remarks.)				
SUMMARY OF FINDINGS : Attach site map showi	ng sampling point locations, tran	isects, important features, etc.				
Hydrophytic Vegetation Present? Yes	No X Is the Sa	impled Area				
Hydric Soil Present? Yes	a / with the st	Wetland? Yes No X				
Wetland Hydrology Present? Yes	51	otional Wetland Site ID:				
IYDROLOGY						
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required				
Primary Indicators (minimum of one is required; cher		Surface Soil Cracks (B6)				
Surface Water (A1)	_ Water-Stained Leaves (B9)	Drainage Patterns (B10)				
High Water Table (A2)	_ Aquatic Fauna (B13)	Moss Trim Lines (B16) Dry-Season W ater Table (C2)				
Saturation (A3) Water Marks (B1)	_ Marl Deposits (B15) _ Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)				
Vale Mars (B1) Sediment Deposits (B2)	Oxidized Rhizospheres on Livin					
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)				
Algal Mat or Crust (B4)	_ Recent Iron Reduction in Tilled					
Iron Deposits (B5)	_ Thin Muck Surface (C7)	Shallow Aquitard (D3)				
Inundation Visible on Aerial Imagery (B7)	_ Other (Explain in Remarks)	plain in Remarks) Microtopographic Relief (D4)				
Sparsely Vegetated Concave Surface (B8)		FAC-Neutral Test (D5)				
Field Observations:	Depth (inches): N/A					
Surface Water Present? Yes No Yes	Depth (inches): N/A					
Water Table Present? Yes No Saturation Present? Yes No	Depth (inches): <u>N/A</u>	Wetland Hydrology Present? Yes No _X				
(includes capillary fringe)	The second s					
Describe Recorded Data (stream gauge, monitoring	well, aerial photos, previous inspec	ctions), if available:				
Remarks:						

Absolute Dominant Indicator Dominant Test workshest:	ETATION : Use scientific names of plants.
<u>% Cover Species? Status</u> Number of Dominant Species 3	e <u>e Stratum</u> (Plot size: <u>30'</u>)
Total Number of Dominant	
Species Across All Strata: (E Percent of Dominant Species 333	
That Are ORL EACW or EAC: (A	
	1
= Total Cover OBL species x1 =	
$ \begin{array}{c} \hline \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} $ \\ \hline \end{array} \\ \\ \end{array} \\ \\ \hline \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \\ \end{array} \\ \hline \\ \hline \end{array} \\ \\ \end{array} \\ \\ \hline \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\	pling/Shrub Stratum (Plot size: 15')
	Gradinus" para bui distance
	Rhammus frankola
Column Totals: 5 (A) 517 (B	Shlow bessined
$\frac{7}{15} \frac{NI}{K} \frac{NI}{F(I)}$ Prevalence Index = B/A = $\frac{3.4446}{100}$	Crather in on on
Hydrophytic Vegetation Indicators:	Sarna in a
Dominance Test is >50%	
= Total Cover Prevalence Index is < 3.0 ¹	
Morphological Adaptations ¹ (Provide supporting	rb Stratum (Plot size: <u>5'</u>)
	Lation salance
Problematic Hydrophytic Vegetation' (Explain)	Phin pr
Indicators of hydric soil and wetland hydrology mus	
be present, unless disturbed or problematic.	Pollowil - Simpler
Definitions of Vegetation Strata:	GRAGATIA LITZIN AND
Tree - Woody plants 3 in. (7.6 cm) or more in diameter	PIPAlla Jalan -
at breast height (DBH), regardless of height.	Juncus femals
Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.	AGUNANDA RO
Herb - All herbaceous (non-woody) plants, regardles	
Woody vines - All woody vines greater than 3.28 ft height.	ų,
	body Vine Stratum (Plot size: <u>30'</u>)
	NIA
Community Type:	
Vegetation Present? Yes No	
= Total Cover	
arate sheet.)	marks: (Include photo numbers here or on a separate sh
Direction of Photo	hoto # Direction

US Army Corps of Engineers

Northcentral and Northeast Region - Interim Version

Profile Desc	1.207.00		enter de la contente	Sa.342.0	-190-0			Sampling Point: DZ
		to the depth	n needed to docume			confirm th	ne absence of inc	licators.)
Depth (inches)	Matrix Color (moist)	%	Color (moist)	ox Feature %	Type ¹	Loc ²	Texture	Remarks
					1100	200		
	1	~~	1.				-	
0-12	7.5783/4	85	10/2016	_15	C	ju	Sic	
			· · · · · · · · · · · · · · · · · · ·			·		
							100 C	
1.1		1						
	-					_		
	The second second lines	(Contractor and				2	
		letion, RM=	Reduced Matrix, CS=	Covered c	or Coated	Sand Grai		: PL=Pore Lining, M=Matrix. for Problematic Hydric Soils ³ :
yaric Soli i	ndicators:						mulcators	for Problematic Hydric Sons :
Histos			Polyvalue B		ce (S8) (L	RR R,		ck (A10) (LRR K, L, MLRA 149B)
	Epipedon (A2) Histic (A3)		MLRA 149E Thin Dark S			MI PA 140	B) Coast Pr	rairie Redox (A16) (LRR K, L, R) cky Peat or Peat (S3) (LRR K, L, R)
Hydrog	en Sulfide (A4)		Loamy Muc	ky Mineral	(F1) (LRF	K, L)	Dark Su	face (S7) (LRR K, L)
Stratifie	ed Layers (A5)		Loamy Gley	ed Matrix (e Below Surface (S8) (LRR K, L)
	ed Below Dark Surfac Dark Surface (A12)	æ (A11)	Depleted Ma Redox Dark	Surface (F3)	6)		Iron-Mar	k Surface (S9) (LRR K, L) nganese Masses (F12) (LRR K, L, R
Sandy	Mucky Mineral (S1)		Depleted Da	ark Surface	(F7)			
	Piedmont Floodplain Gleyed Matrix (S4)	Soils (F19) (MLRA 149B) Redox Depr	ressions (F)	8)		Mesic St	podic (TA6) (MLRA 144A, 145, 149E
Januy	Redox (S5)						Red Par	ent Material (TF2)
Sandy	111 11 1001	MI DA 1400	N.				Very Sha	allow Dark Surface (TF12) xplain in Remarks)
Sandy Strippe	d Matrix (S6))					Apair in Remarkay
Sandy Strippe	urface (S7) (LRR R, I							
Sandy Strippe	d Matrix (S6) urface (S7) (LRR R, I							
Sandy Strippe Dark S	urface (S7) (LRR R, I			present, unl	ess distu	bed or prob	lematic.	
Sandy Strippe Dark S	urface (S7) (LRR R, I		nd hydrology must be p	present, unl	ess distu	bed or prob	lematic.	
Sandy Strippe Dark S	urface (S7) (LRR R, I			present, unl	ess distu	bed or prob	ematic.	
Sandy Strippe Dark S Indicators of cestrictive L Type:	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No 🗙
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes <u>No</u>
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No 🔀
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes <u>No</u>
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes <u>No</u>
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No 🔀
Sandy Strippe Dark S Indicators of Cestrictive L Type:	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No 🔀
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No 🔀
Sandy Strippe Dark S Indicators of testrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes <u>No</u>
Sandy Strippe Dark S Indicators of testrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No 🔀
Sandy Strippe Dark S Indicators of testrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No 🔀
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No 🔀
Sandy Strippe Dark S Indicators of estrictive L Type: Depth (inc	urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):			present, unl	ess distu	bed or prob	5. A	sent? Yes No 🔀

Investigator(s): Socit Livingstone & Jody Celeste Seci Landform (hillslope, terrace, etc.): Laq Le Plan Loca Slope (%): Lat: 42.98924 Long: Soil Map Unit Name: Ode558.5.1 Floam M Are climatic / hydrologic conditions on the site typical for this time of year? Yes Are Vegetation , Soil , or Hydrology significantly disturbed? Are Vegetation , Soil , or Hydrology naturally problematic SUMMARY OF FINDINGS : Attach site map showing sampling point locat Hydrophytic Vegetation Present? Yes No Hydrophytic Soil Present? Yes No	W I classification:
Andform (hillslope, terrace, etc.): La KE MA.A. Local Slope (%): Lat: <u>42.98904</u> Long: Soil Map Unit Name: <u>00656a</u> , <u>1</u> + <u>10 a m</u> Mare climatic / hydrologic conditions on the site typical for this time of year? Yes Are Vegetation <u>, Soil</u> , or Hydrology <u>significantly disturbed?</u> Are Vegetation <u>, Soil</u> , or Hydrology <u>naturally problematic</u> <u>SUMMARY OF FINDINGS : Attach site map showing sampling point locat</u> Hydrophytic Vegetation Present? Yes <u>No</u> Hydric Soil Present? Yes <u>No</u> Wetland Hydrology Present? Yes <u>No</u> Wetland Hydrology Present? Yes <u>No</u> Remarks: (Explain alternative procedures here or in a separate report.) AVDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply) <u>Surface Water (A1)</u> <u>X</u> Water-Stained Leaves High Water Table (A2) <u>Aquatic Fauna (B13)</u> Saturation (A3) <u>Marl Deposits (B15)</u> Water Marks (B1) <u>Hydrogen Sulfide Odon</u> Sediment Deposits (B2) <u>Oxidized Rhizosphere</u> Drift Deposits (B3) <u>Presence of Reduced</u> Algal Mat or Crust (B4) <u>Recent Iron Reduction</u> Iron Deposits (B5) <u>Thin Muck Surface (C</u> <u>Inundation Visible on Aerial Imagery (B7)</u> <u>Other (Explain in Ren</u> Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes <u>No</u> <u>Depth (inches): <u>Mi</u> Vater Table Present? Yes <u>No</u> <u>Depth (inches): <u>Mi</u> (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previo</u></u>	I relief (concave, convex, none): CONCAVE -78, 77410 Datum: NAD83 W1 classification: DS _XNo (If no, explain in Remarks.) Yes No X Are "Normal Circumstances" present? Yes XNo ? Yes No X (If needed, explain any answers in Remarks.) ions, transects, important features, etc. Is the Sampled Area within a Wetland? Yes XNo
Slope (%):	-78.77410 Datum: NAD83 W1 classification: DSS _XNo
Slope (%):	W1 classification:
Soil Map Unit Name: DDE56a 5.1 + /oam Mure climatic / hydrologic conditions on the site typical for this time of year? Yes Vire Vegetation	_XNo
wre climatic / hydrologic conditions on the site typical for this time of year? Yes wre Vegetation	Yes No X Are "Normal Circumstances" present? YesX No ? Yes No _X (If needed, explain any answers in Remarks.) ions, transects, important features, etc. Is the Sampled Area within a Wetland? Yes X No If yes, optional Wetland Site ID: W2 Secondary Indicators (minimum of two required)
are Vegetation, Soil, or Hydrology naturally problematic are Vegetation, Soil, or Hydrology naturally problematic are Vegetation, Soil, or Hydrology naturally problematic are Vegetation Present? Yes No Hydric Soil Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: (Explain alternative procedures here or in a separate report.) MVDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Yes No X Are "Normal Circumstances" present? YesX No ? Yes No _X (If needed, explain any answers in Remarks.) ions, transects, important features, etc. Is the Sampled Area within a Wetland? Yes X No If yes, optional Wetland Site ID: W2 Secondary Indicators (minimum of two required)
Are Vegetation, Soil, or Hydrology naturally problematic SUMMARY OF FINDINGS : Attach site map showing sampling point locat Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: (Explain alternative procedures here or in a separate report.) MYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	? Yes NoX (If needed, explain any answers in Remarks.) ions, transects, important features, etc. Is the Sampled Area within a Wetland? Yes X No If yes, optional Wetland Site ID: W2 Model and Site ID: W2 Secondary Indicators (minimum of two required)
SUMMARY OF FINDINGS : Attach site map showing sampling point locat Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Remarks: (Explain alternative procedures here or in a separate report.) HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	ions, transects, important features, etc. Is the Sampled Area within a Wetland? Yes × No
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: (Explain alternative procedures here or in a separate report.) AVDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Is the Sampled Area within a Wetland? Yes <u>No</u> If yes, optional Wetland Site ID: <u>W</u> 2
Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: (Explain alternative procedures here or in a separate report.) Hydrology Metland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	within a Wetland? Yes X No
Wetland Hydrology Present? Yes No Remarks: (Explain alternative procedures here or in a separate report.) IVDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Secondary Indicators (minimum of two required)
Remarks: (Explain alternative procedures here or in a separate report.) WDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Secondary Indicators (minimum of two required)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	
Primary Indicators (minimum of one is required; check all that apply)	
Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Water Crust (B4) Inon Deposits (B5) Inon Deposits (B5) Inon Deposits (B5) Thin Muck Surface (C1) Inon Deposits (B5) Thin Muck Surface (C2) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Depth (inches): Mark Depth (inches): Mark Surface Vater Present? Yes No Depth (inches): Mark Dept	Surface Soil Cracks (B6)
High Water Table (A2) Aquatic Fauna (B13) Saturation (A3) Marl Deposits (B15) Water Marks (B1) Hydrogen Sulfide Odor Sediment Deposits (B2) Oxidized Rhizosphere Drift Deposits (B3) Presence of Reduced Algal Mat or Crust (B4) Recent Iron Reduction Iron Deposits (B5) Thin Muck Surface (C Inundation Visible on Aerial Imagery (B7) Other (Explain in Rem Sparsely Vegetated Concave Surface (B8) Seturation Present? Field Observations: No Surface Water Present? Yes No Saturation Present? Yes No Depth (inches): Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous) Material photos, previous)	
Saturation (A3) Marl Deposits (B15) Water Marks (B1) Hydrogen Sulfide Odor Sediment Deposits (B2) Oxidized Rhizosphere Drift Deposits (B3) Presence of Reduced Algal Mat or Crust (B4) Recent Iron Reduction Iron Deposits (B5) Thin Muck Surface (C Inundation Visible on Aerial Imagery (B7) Other (Explain in Ren Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): Maria Depresent? Yes No Depth (inches): Maria Depresent? Yes No	
Water Marks (B1) Hydrogen Sulfide Odor Sediment Deposits (B2) Oxidized Rhizosphere Drift Deposits (B3) Presence of Reduced Algal Mat or Crust (B4) Recent Iron Reduction Iron Deposits (B5) Thin Muck Surface (C' Inundation Visible on Aerial Imagery (B7) Other (Explain in Ren Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): Mater Table Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): Mater Table Present? Yes No Depth (inches): Mater Table Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): Mater Table Present? Yes No Depth (inches):	Moss Trim Lines (B16)
Sediment Deposits (B2)Oxidized Rhizosphere Drift Deposits (B3)Presence of Reduced Algal Mat or Crust (B4)Recent Iron Reduction Iron Deposits (B5)Thin Muck Surface (C Inundation Visible on Aerial Imagery (B7)Other (Explain in Ren Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? YesNoDepth (inches):/ Water Table Present? YesNoDepth (inches):/ Saturation Present? YesNoDepth (inches):/ Sturation Present? YesNoDepth (inches):/ Saturation Present? YesNoDepth (inches):/ Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous)	Crayfish Burrows (C8)
Drift Deposits (B3) Presence of Reduced Algal Mat or Crust (B4) Recent Iron Reduction Iron Deposits (B5) Thin Muck Surface (C Inundation Visible on Aerial Imagery (B7) Other (Explain in Ren Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Depth (inches): No Water Table Present? Yes No Depth (inches): No Saturation Present? Yes No Depth (inches): No	
Algal Mat or Crust (B4) Recent Iron Reduction Iron Deposits (B5) Thin Muck Surface (C Inundation Visible on Aerial Imagery (B7) Other (Explain in Ren Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches) Present? Yes No No No	것같이 아이들 가지 않는 것 같은 것 같은 것은 것 같은 것 같은 것 같이 많이 많이 많이 많이 많이 많이 많이 했다.
Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): Saturation Present? Yes Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous	7) Shallow Aquitard (D3)
Field Observations: Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): Includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous	
Surface Water Present? Yes No Depth (inches): Image: Constraint of the second	FAC-Neutral Test (D5)
Water Table Present? Yes <u>No</u> Depth (inches): <u>No</u> Saturation Present? Yes <u>No</u> Depth (inches): <u>No</u> (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previo	
Saturation Present? Yes No Yes Depth (inches): M (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previo	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previo	Wetland Hydrology Present? Yes X No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previo	
	weitand nyulology resent i res no
Remarks:	
romente.	

e <u>Stratum</u> (Plot size: <u>30'</u>)	Absolute <u>% Cover</u> 30		ant Indicator s? <u>Status</u> FAW	Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC: (A)
Pourla- Ullitation	5	×	PPC	Total Number of Dominant 4 (B)
	i and in the second sec			Percent of Dominant Species 100 (A/
	1000			Prevalence Index worksheet: Total % Cover of: Multiply by:
	35	= Total	Cover	OBL species x 1 =
oling/Shrub Stratum (Plot size: 15')	1.1			FACW species x 2 =
Accor succhar non-	10.00	1	FAG	FAC species x 3 =
Action	T	T.J	CAC	FACU species x 4 =
neilie	- 2			UPL species x 5 =
				Column Totals: (A) (E
				Prevalence Index = B/A =
				Hydrophytic Vegetation Indicators:
				Rapid Test for Hydrophytic Vegetation
	45	Take	0	Dominance Test is >50%
		_ = Total	Cover	Prevalence Index is < 3.0 ¹
b Stratum (Plot size:)	-7	N	FALL	Morphological Adaptations ¹ (Provide supporting
Alexialinene		10		data in Remarks or on a separate sheet)
SAN EX SUDPINI	70	Y	Fr. 1.1	Problematic Hydrophytic Vegetation ¹ (Explain)
LUTH JANGO CAME	10	N	TRAN	
SuthAmile and	5	N	FPS	Indicators of hydric soil and wetland hydrology mus be present, unless disturbed or problematic.
				Definitions of Vegetation Strata:
				Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
				Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
				Herb - All herbaceous (non-woody) plants, regardles
				of size, and woody plants less than 3.28 ft tall.
1				Woody vines - All woody vines greater than 3.28 ft in
	96 =1	Total Cov	ver	height.
ody Vine Stratum (Plot size: 30')				MILLI INSSA SAPINAS
NA		_		Vict Browno PED
				Community Type:
				Hydrophytic
				Vegetation
		= Total	Cover	Present? Yes No No
narks: (Include photo numbers here or on a separate	sheet.)			
oto # Direct	ion of Photo	. 5	53 81	
Direct	ion of Flioto			

Depth	Matrix	1.1	Red	lox Featur			1.1.1	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
	· · · · · · · · · · · · · · · · · · ·		1					
0-10	7.5572 1/2	80	1000 5/8	20	C	M	5:0	
		-		-		_		
				-				
				-				
		1.5			1	100		
						_		
								81
		-	Deduced Martin CD			- Cand Can	2) acotion:	Di -Dere Linine, MaMatriu
	indicators:	etion, Rivi	Reduced Matrix, CS	=Covered (or Coated	Sano Gra		PL=Pore Lining, M=Matrix. r Problematic Hydric Soils ³ :
yune bour	indiduction.							
Histos	ol (A1) Epipedon (A2)		— Polyvalue E MLRA 149I		ce (S8) (I	LRR R,	2 cm Mucl	(A10) (LRR K, L, MLRA 149B) irie Redox (A16) (LRR K, L, R)
Black I	Histic (A3)		Thin Dark S	Surface (S9) (LRR R,	MLRA 149	B) 5 cm Mucl	y Peat or Peat (S3) (LRR K, L, R)
	gen Sulfide (A4) ed Layers (A5)		Loamy Muc Loamy Gley	ky Mineral	(F1) (LRF	RK, L)	Dark Surfa	ace (S7) (LRR K, L) Below Surface (S8) (LRR K, L)
Deplet	ed Below Dark Surface	e (A11)	Depleted M	atrix (F3)			Thin Dark	Surface (S9) (LRR K, L)
	Dark Surface (A12) Mucky Mineral (S1)		Kedox Dark	K Surface (F	F6)		Iron-Mang	anese Masses (F12) (LRR K, L, R
	Piedmont Floodplain S	Soils (F19)	(MLRA 149B)				1000	
	Gleyed Matrix (S4) Redox (S5)		Redox Dep	ressions (F	8)			dic (TA6) (MLRA 144A, 145, 1498 It Material (TF2)
Sandy		0.00.00					Very Shall	ow Dark Surface (TF12)
Strippe	d Matrix (S6)						Other (Exp	
Strippe	urface (S7) (LRR R, N	ALRA 149	B)					blain in Remarks)
Strippe	urface (S7) (LRR R, N	/LRA 149	в)				_	olain in Remarks)
Strippe Dark S	urface (S7) (LRR R, N		B) and hydrology must be	present, un	less distu	rbed or prot		olain in Remarks)
Strippe Dark S Indicators of Restrictive L	hydrophytic vegetation			present, un	less distu	rbed or prot		olain in Remarks)
Strippe Dark S	urface (S7) (LRR R, N			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	ent? Yes X No
Strippe Dark S Indicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prob	olematic.	
Strippe Dark S Indicators of testrictive L Type:	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S ndicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S Indicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S ndicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S ndicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S Indicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S Indicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S Indicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S Indicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S Indicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S Indicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	
Strippe Dark S ndicators of estrictive L Type: Depth (inc	hydrophytic vegetation			present, un	less distu	rbed or prot	olematic.	

Project/Site: Westwood Country Club - 772 North Fo	prest Road City/County: Amherst/Erie County Sampling Date: September 17, 2012	£
Applicant/Owner: Mensch Capital Partners, LLC	State: NY Sampling Point: D9	
Investigator(s): Scott Livingstone & Jody Celeste	Section, Township, Range: 68.01-1-1	-
Landform (hillslope, terrace, etc.):	Plan Local relief (concave, convex, none): 20NCALE	2
Slope (%): 0 Lat: 42.9877		
Soil Map Unit Name: Schohace 5.14	Joan, 3-56 NWI classification: PFO	
Are climatic / hydrologic conditions on the site typical	for this time of year? Yes X No (If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology		s_X_No_
	naturally problematic? Yes NoX (If needed, explain any answers in Rema	
SUMMARY OF FINDINGS : Attach site map show	ving sampling point locations, transects, important features, etc.	
Hydrophytic Vegetation Present? Yes	X No Is the Sampled Area	
Hydric Soil Present? Yes	No within a Wetland? Yes No	
Wetland Hydrology Present? Yes	No If yes, optional Wetland Site ID: 5	
HYDROLOGY		
Wetland Hydrology Indicators:	Secondary Indicators (minimum of tw	o required)
Primary Indicators (minimum of one is required; che		
Surface Water (A1)	Water-Stained Leaves (B9) Drainage Patterns (B10)	
High Water Table (A2)	Aquatic Fauna (B13) Moss Trim Lines (B16) Marl Deposits (B15) Dry-Season W ater Table (C2)	100
Saturation (A3) Water Marks (B1)	Marl Deposits (B15) Dry-Season W ater Table (C2) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)	1.0
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imager	y (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1)	
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2)	
Iron Deposits (B5)	Thin Muck Surface (C7) Shallow Aquitard (D3)	
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks) Microtopographic Relief (D4)	
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)	
Field Observations:	v asla	
	Depth (inches): _///A	
Water Table Present? Yes No 2	✓ Depth (inches):/A	
Saturation Present? Yes No (includes capillary fringe)	Wethand Hydrology Present? Tes No	
Describe Recorded Data (stream gauge, monitoring	g well, aerial photos, previous inspections), if available:	
The state of the second second second		
Remarks:		
including.		

Sampling Point:

Tree Stratum (Plot size: 30')	Absolute % Cover		ant Indicator s? Status	Dominance Test worksheet:
() () () () () () () () () () () () () (50	Y	F I	Number of Dominant Species That Are OBL, FACW , or FAC: (A)
FOR PLATUR STUDIES OF MILLIN	15	N	FRA	· · · · ·
Quintia Presin	1.0	1	FRE	Total Number of Dominant Species Across All Strata:
VINUS MERICANA	e	R.	TAD	
			15	Percent of Dominant Species (A)
				Prevalence Index worksheet:
	- 20	(Total % Cover of:Multiply by:
	20	= Total	Cover	OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 15')	15	V	FAGA	FACW species x 2 = FAC species x 3 =
	17	1	1 41 41 M	FAC species x3
KINNO.	113		t A	UPL species x 5 =
Longers min on	1	N	19	Column Totals: (A) (E
l				
5				Prevalence Index = B/A =
3.				Hydrophytic Vegetation Indicators:
7				Rapid Test for Hydrophytic Vegetation
	27	= Tota	al Cover	Dominance Test is >50%
Herb Stratum (Plot size: <u>5'</u>)				Prevalence Index is < 3.0 ¹
A Star A Star	10	6	TPU.	Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
	15	1.0	05/	Problematic Hydrophytic Vegetation ¹ (Explain)
. CANEN SUPPARINE	S	1.5	FALW	이 이 것 같아 아이가 가지 않는 것 같아요. 이 것 같아요. 이 가지 않는 것 않는
				Indicators of hydric soil and wetland hydrology mus
4				be present, unless disturbed or problematic.
5				Definitions of Vegetation Strata:
б ·				Tree - Woody plants 3 in. (7.6 cm) or more in diameter
		-		at breast height (DBH), regardless of height.
3				Sapling/shrub - Woody plants less than 3 in. DBH
9				and greater than 3.28 ft (1 m) tall.
10	-	_		Herb - All herbaceous (non-woody) plants, regardles
11	<u> </u>			of size, and woody plants less than 3.28 ft tall.
2				Woody vines - All woody vines greater than 3.28 ft i
	30 -	Total Co	ver	height.
Voody Vine Stratum (Plot size: <u>30'</u>)				
. NA		_		Community Type: Hind SWAMP
				Community Type:
3.				Hydrophytic
				Vegetation
1	7	= Tots	al Cover	Present? Yes No
Remarks: (Include photo numbers here or on a separate sh		1018		
Dear		N	1	
Remarks: (Include photo numbers here or on a separate sh Photo # Directio		- 101		

	N 11
Sampling Point:	24

nches)	Matrix	<u></u>		ox Featur			-	A. 10.10
ICHES)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
. /		00	1054		0		2.0	
1-6	1044 12	10	104-16	L	<u>_C</u>	-nr	31X -	
6-12	10723/2	85	1014-5/8	15	<u></u>	M	Sick	
		-	-					
	<u> </u>	-						
_								
		2-2		$ \longrightarrow $				
					1			
								0
			STA CANADAREA					
	ncentration, D=Deple ndicators:	etion, RM=	Reduced Matrix, CS=	Covered	or Coated	Sand Gra		on: PL=Pore Lining, M=Matrix. s for Problematic Hydric Soils ³ :
Histoso			Polyvalue B	elow Surfa	ce (S8) (I	RR R	2 cm M	/uck (A10) (LRR K, L, MLRA 149B)
Histic E	pipedon (A2)		MLRA 149E	3)			Coast	Prairie Redox (A16) (LRR K, L, R)
	listic (A3) en Sulfide (A4)		Thin Dark S Loamy Muc	ky Mineral	(F1) (LRF		Dark S	Aucky Peat or Peat (S3) (LRR K, L, R Surface (S7) (LRR K, L)
Stratifie	d Layers (A5)	. /	Loamy Gley	ed Matrix			Polyva	lue Below Surface (S8) (LRR K, L) ark Surface (S9) (LRR K, L)
Thick D	ed Below Dark Surface Dark Surface (A12)	e (A11)	Pepleted Ma Redox Dark	Surface (F				anganese Masses (F12) (LRR K, L, F
Sandy	Mucky Mineral (S1)	Colle (E10)	Depleted Da	ark Surface	e (F7)			
			WILKA 149D)	States Accession	-		Maria	2
	Piedmont Floodplain S Gleyed Matrix (S4)	5015 (F19) (Redox Depr	ressions (F	8)		Mesic	Spodic (TA6) (MLRA 144A, 145, 149
Sandy	Gleyed Matrix (S4) Redox (S5)	50115 (119) (Redox Depr	essions (F	8)		Red Pa	arent Material (TF2)
Sandy Sandy Sandy Sandy Sandy Strippe	Gleyed Matrix (S4)		Redox Depr	essions (F	8)		Red Pa Very S	Spodic (TA6) (MLRA 144A, 145, 149 arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy Stripped	Gleyed Matrix (S4) Redox (S5) d Matrix (S6)		Redox Depr	essions (F	8)		Red Pa Very S	arent Material (TF2) hallow Dark Surface (TF12)
Sandy (Sandy) Strippe Dark St	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, N	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other	arent Material (TF2) hallow Dark Surface (TF12)
Sandy (Sandy I Strippe Dark St ndicators of	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other	arent Material (TF2) hallow Dark Surface (TF12)
Sandy of Sandy of Sandy of Sandy of Sandy of Sandy of Stripper Stripper Dark Stripper Strippe	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, N hydrophytic vegetatior	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy (Sandy I Strippe Dark St dicators of I strictive La	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) hallow Dark Surface (TF12)
Sandy I Sandy I Strippe Dark Si dicators of I strictive Li strictive Li Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (hallow Dark Surface (TF12) (Explain in Remarks)
Sandy I Sandy I Strippe Dark Si dicators of I strictive Li Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy (Sandy (Strippe: Dark St dicators of (strictive La Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) hallow Dark Surface (TF12) (Explain in Remarks)
Sandy (Sandy (Strippe: Dark St dicators of (strictive La Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) hallow Dark Surface (TF12) (Explain in Remarks)
Sandy (Sandy (Strippe: Dark St dicators of (strictive La Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			fbed or pro	Red Pa Very S Other (arent Material (TF2) hallow Dark Surface (TF12) (Explain in Remarks)
Sandy (Sandy (Strippe: Dark St dicators of (strictive La Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) hallow Dark Surface (TF12) (Explain in Remarks)
Sandy (Sandy (Strippe: Dark St dicators of (strictive La Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy I Sandy I Strippe Dark Si dicators of I strictive Li Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy I Sandy I Strippe Dark Si dicators of I strictive Li strictive Li Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy I Sandy I Strippe Dark Si dicators of I strictive Li Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy I Sandy I Strippe Dark Si dicators of I strictive Li Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy I Sandy I Strippe Dark Si dicators of I strictive Li Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			rbed or pro	Red Pa Very S Other (arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy I Sandy I Strippe Dark Si dicators of I strictive La Type:	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy I Sandy I Strippe Dark Si dicators of I strictive Li Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			rbed or pro	Red Pa Very S Other (arent Material (TF2) ihallow Dark Surface (TF12) (Explain in Remarks)
Sandy I Sandy I Strippe Dark Si dicators of I strictive Li Type: Depth (incl	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	ILRA 149B	Redox Depr			bed or pro	Red Pa Very S Other (arent Material (TF2) hallow Dark Surface (TF12) (Explain in Remarks)

		orest Road City/Coun		Sampling Date: <u>September 17, 2012</u> Sampling Point: <u>5</u>
pplicant/Owner: <u>Mensch Capita</u>			A STATE OF A STATE OF A STATE	
vestigator(s): Scott Livingstone	1 1/2	01	ection, Township, Range	3 × 11 11 × 1 / 1 4 7
andform (hillslope, terrace, etc.):			ocal relief (concave, con	
ope (%):Lat:	42 98		-78.778	Datum: NAD83
bil Map Unit Name:	ine Silt	loan	NW I classification:	
e climatic / hydrologic condition	s on the site typica	I for this time of year? Y	res X No	(If no, explain in Remarks.)
				Are "Normal Circumstances" present? Yes X No
				(If needed, explain any answers in Remarks.)
JMMARY OF FINDINGS : Atta				
		-	1	
Hydrophytic Vegetation Present	t? Yes	No	Is the Sampled Area within a Wetland?	Yes No X
Hydric Soil Present?	Yes			
Wetland Hydrology Present? Remarks: (Explain alternative p		No	If yes, optional Wetla	and Site ID:
YDROLOGY				
Wetland Hydrology Indicators	s:			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of		eck all that apply)		Surface Soil Cracks (B6)
Surface Water (A1)		Water-Stained Leav	/es (B9)	Drainage Patterns (B10)
High Water Table (A2)		Aquatic Fauna (B13		Moss Trim Lines (B16)
Saturation (A3)		Marl Deposits (B15		Dry-Season W ater Table (C2)
Water Marks (B1)		Hydrogen Sulfide C		Crayfish Burrows (C8)
Sediment Deposits (B2)		Oxidized Rhizosph	eres on Living Roots (C	
Drift Deposits (B3)		Presence of Reduc		Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)			tion in Tilled Soils (C6)	Geomorphic Position (D2)
Iron Deposits (B5)		Thin Muck Surface	7 - F	Shallow Aquitard (D3)
Inundation Visible on Aeria		Other (Explain in I	Remarks)	Microtopographic Relief (D4) FAC-Neutral Test (D5)
Sparsely Vegetated Conce Field Observations:	ave Sunace (B6)			
Surface Water Present?	Yes No	Depth (inches):	J/A	
Water Table Present?	Yes No	Depth (inches):	376	
Saturation Present?	Yes No	Depth (inches):	V/A Wetlas	nd Hydrology Present? Yes No X
(includes capillary fringe)			~	
	m gauge, monitorir	ng well, aerial photos, pr	evious inspections), if av	alladie:
Describe Recorded Data (strea				
Describe Recorded Data (strea				
Describe Recorded Data (stream				
Describe Recorded Data (streaments:				

Sampling Point:

EGETATION : Use scientific names of plants.		Sampling Point:
	Absolute Dominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30'</u>)	<u>% Cover</u> <u>Species?</u> <u>Status</u>	Number of Dominant Species 3
2. A verse paternes	25 Y FAW	That Are OBL, FACW, or FAC: (A)
		Total Number of Dominant Species Across All Strata:(B)
3		
4		Percent of Dominant Species 50 That Are OBL, FACW, or FAC: (A/B)
5		
6		Prevalence Index worksheet:
7	- 90	Total % Cover of: Multiply by:
	<u>90</u> = Total Cover	OBL species O $x1 = O$ FACW species 35 $x2 = 70$
Sapling/Shrub Stratum (Plot size: 15')	D. Y DV.	
RAPHING CHOMPION	RO FAC	FACU species 107 x4 = 429
2. FRAINS pluster Am		UPL species $3 \times 5 = 0$
a Paranaca	<u>N</u>	Column Totals: 102 (A) 558 (B)
A TILLA UMERICVIA	- N TIV	Prevalence Index = B/A =
s. Knishnan a sala	<u>5 N 116</u>	
s. Rusu	S N DECV	Hydrophytic Vegetation Indicators:
7		Rapid Test for Hydrophytic Vegetation
	52 = Total Cover	Dominance Test is >50% Prevalence Index is < 3.0 ¹
Herb Stratum (Plot size: 5')	2 1 01	Morphological Adaptations ¹ (Provide supporting
ROSA AND THE ACT	15 Y AC	data in Remarks or on a separate sheet)
2. ROSA MUT	S Y FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
3.		
4		Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5		Definitions of Vegetation Strata:
6		
7		Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
B		
		Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
		Herb - All herbaceous (non-woody) plants, regardless
10		of size, and woody plants less than 3.28 ft tall.
		Woody vines - All woody vines greater than 3.28 ft in
12	STO = Total Cover	height.
	= 10tal Cover	
Woody Vine Stratum (Plot size:) 1. NA		SNEW
		Community Type: (partizes a 6 understory
2		Monster
3		Hydrophytic Vegetation
4	0-	Present? Yes No
	= Total Cover	
Remarks: (Include photo numbers here or on a separate	N/	
Photo #S Direct	ion of Photo	

Project Code: W1109b

Sampling Point

6.1		
K S	2	5
12		J

Depth	Matrix		Rec	lox Featur	res					
nches)	Color (moist)	%	Color (moist)	%	Type	Loc ²	Texture		Remar	ks
							100			
0-6	10424/1	100					2.0			
	1011- 42	100								
6-12	10712 7/9	45	1078-16	5	C	121	1.1			
			and a second rest							
								-		
								_		
		-			-	_		_		
		-			-					
					()					
				- C	Casta	Cond Cro	21 000	tion: DI -E	Pore Lining,	M-Matrix
vpe: C=Co	ncentration, D=Deple	tion, RIVI=	Reduced Matrix, CS	=Covered	or Coaled	J Sand Gra				ydric Soils ³ :
and som	idicators.						manuale		promatio n	June concr
Histoso	I (A1)		Polyvalue B	Below Surfa	ace (S8) (I	RR R,	2 cm	Muck (A10)) (LRR K, L,	MLRA 149B)
	pipedon (A2)		MLRA 149			MI DA 440		st Prairie Re	edox (A16) (I	LRR K, L, R) 3) (LRR K, L, R)
	listic (A3) en Sulfide (A4)		Thin Dark S Loamy Mut	kv Mineral) (LRR R,	MLKA 149			7) (LRR K, L	
	d Layers (A5)			yed Matrix			Poly	value Belov	v Surface (St	B) (LRR K, L)
Stratifie	u Layera (AJ)								CO (SO) (I DE	RK.L)
Deplete	d Below Dark Surface	(A11)	Depleted M		E6)		Iron-	Dark Surfa	Masses (F1	2) (IRRKIR
Deplete Thick D Sandy	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1)		Depleted M Redox Dari Depleted D	k Surface (Iron-	Manganese	e Masses (F1	12) (LRR K, L, R
Deplete Thick D Sandy	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S		Depleted M Redox Dar Depleted D MLRA 149B)	k Surface (ark Surfac	e (F7)		Iron-	Manganese	e Masses (Fr	12) (LRR K, L, R
Deplete Thick D Sandy I Sandy	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Gleyed Matrix (S4)		Depleted M Redox Dari Depleted D	k Surface (ark Surfac	e (F7)		Iron-	Manganeso c Spodic (1	A6) (MLRA	12) (LRR K, L, R
Deplete Thick D Sandy Sandy Sandy Sandy Strippe	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Gleyed Matrix (S4) Redox (S5) d Matrix (S6)	oils (F19) (Depleted M Redox Dari Depleted D MLRA 149B) Redox Dep	k Surface (ark Surfac	e (F7)		Iron- Mesi Red Very	Manganeso c Spodic (1 Parent Mat Shallow D	A6) (MLRA erial (TF2) ark Surface (12) (LRR K, L, R 144A, 145, 149E
Deplete Thick D Sandy Sandy Sandy Strippe	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Gleyed Matrix (S4) Redox (S5)	oils (F19) (Depleted M Redox Dari Depleted D MLRA 149B) Redox Dep	k Surface (ark Surfac	e (F7)		Iron- Mesi Red Very	Manganeso c Spodic (1 Parent Mat Shallow D	A6) (MLRA erial (TF2)	12) (LRR K, L, R 144A, 145, 149B
Deplete Thick D Sandy Sandy Sandy Sandy Strippe	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Gleyed Matrix (S4) Redox (S5) d Matrix (S6)	oils (F19) (Depleted M Redox Dari Depleted D MLRA 149B) Redox Dep	k Surface (ark Surfac	e (F7)		Iron- Mesi Red Very	Manganeso c Spodic (1 Parent Mat Shallow D	A6) (MLRA erial (TF2) ark Surface (12) (LRR K, L, R 144A, 145, 149B
Deplete Thick D Sandy Sandy Sandy Strippe Dark St	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rhed or prob	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D	A6) (MLRA erial (TF2) ark Surface (12) (LRR K, L, R) 144A, 145, 149B
Deplete Thick D Sandy Sandy Sandy Strippe Dark St	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prob	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D	A6) (MLRA erial (TF2) ark Surface (12) (LRR K, L, R) 144A, 145, 149B
Deplete Thick D Sandy Sandy Sandy Sandy Sandy Strippe Dark St	ed Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prob	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D	A6) (MLRA erial (TF2) ark Surface (12) (LRR K, L, R) 144A, 145, 149B
Deplete Thick D Sandy I S	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Jurface (S7) (LRR R, M hydrophytic vegetation	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prob	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R) 144A, 145, 149B TF12)
Deplete Thick D Sandy Sandy Sandy Sandy Sandy Strippe Dark St	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R) 144A, 145, 149B
Deplete Thick D Sandy Sandy Sandy Sandy Sandy Sandy Dark Strippe Dark Strippe Type:	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R) 144A, 145, 149B TF12)
Deplete Thick D Sandy Sandy Sandy Sandy Strippe Dark St Dark St Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R) 144A, 145, 149B TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prob	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149B TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prob	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Sandy Strippe Dark St Dark St Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prob	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Sandy Strippe Dark St Dark St Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Sandy Strippe Dark St Dark St Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Sandy Strippe Dark St Dark St Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prob	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, R 144A, 145, 149E TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, F 144A, 145, 149) TF12)
Deplete Thick D Sandy Sandy Sandy Strippe Dark St strictive L Type: Depth (incl	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain S Sleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, M hydrophytic vegetation ayer (if observed):	oils (F19) (LRA 1498	Depleted M Redox Dar Depleted D MLRA 149B) Redox Dep	k Surface (lark Surfac vressions (f	e (F7) -8)	rbed or prot	Iron- Mesi Red Very Othe	Manganeso c Spodic (1 Parent Mat Shallow D r (Explain i	A6) (MLRA erial (TF2) ark Surface (n Remarks)	12) (LRR K, L, F 144A, 145, 149) TF12)

Project/Site: Westwood Country Club - 772 North Fores	t Road City/County: Amherst/Erie County Sampling Date: September 24, 2012
Applicant/Owner: <u>Mensch Capital Partners, LLC</u>	State: NY Sampling Point:
nvestigator(s): Scott Livingstone & Jody Celeste	Section, Township, Range: 68.01-1-1
	ATN Local relief (concave, convex, none):
Slope (%): 1- 3 Lat: 42.9823	12 Long: - 78, 77537 Datum: NAD83
Soil Map Unit Name: COSAD LOAMY	FINE SAIN I classification:
	this time of year? Yes X No (If no, explain in Remarks.)
	significantly disturbed? Yes <u>No X</u> Are "Normal Circumstances" present? Yes <u>X</u> No
UMMARY OF FINDINGS : Attach site map showing	a sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes	No Sampled Area
Hydric Soil Present? Yes	within a Wetland? Yes No
Wetland Hydrology Present? Yes	No If yes, optional Wetland Site ID:
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check	
Surface Water (A1)	Water-Stained Leaves (B9) Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13) Moss Trim Lines (B16)
Saturation (A3)	Marl Deposits (B15) Dry-Season W ater Table (C2) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)
Water Marks (B1) Sediment Deposits (B2)	Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7) Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks) Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	dla
Surface Water Present? Yes No	Depth (inches):
Water Table Present? Yes No S	Depth (inches): Wetland Hydrology Present? Yes No
Saturation Present? Yes No Yes No Yes	Depth (inches): Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring w	vell, aerial photos, previous inspections), if available:
Remarks:	
indinging.	

GETATION : Use scientific names of plants.	Absolute	Domina	nt Indicator	Sampling Point:
ree Stratum (Plot size: <u>30'</u>)	<u>% Cover</u>	Species	? Status	Dominance Test worksheet: Number of Dominant Species
		<u>A</u>	1 Mary	That Are OBL, FACW, or FAC: (A)
				Total Number of Dominant Species Across All Strata:(B)
				Percent of Dominant Species
k				That Are OBL, FACW, or FAC:(A/B)
				Prevalence Index worksheet:
		1.000	_	Total % Cover of: Multiply by:
	1a	= Total C	Cover	OBL species x 1 =
apling/Shrub Stratum (Plot size: 15')	. <	12	chi.	FACW species 30 $x^2 = 40$ FAC species 20 $x^3 = 40$
FREIND PLANY VERIC	0, 9	<u></u>	_provided	FAC species 40 $x3 = 240$
				UPL species x 5 =
				Column Totals: (A) (B)
·				Prevalence Index = B/A =
·				Hydrophytic Vegetation Indicators:
· · · · · · · · · · · · · · · · · · ·				Rapid Test for Hydrophytic Vegetation
		= Total	Cover	Dominance Test is >50%
erb Stratum (Plot size: 5')				Prevalence Index is < 3.0 ¹
Pheun pratinge,	25	. ×	MAN	Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
AGROSTIS hypemalia	15	$\sim \gamma$	FPS.	Problematic Hydrophytic Vegetation ¹ (Explain)
1 1 1. 3.9 h	12	N	_ TACO	Indicators of hydric soil and wetland hydrology must
Jahren Prister		r	Incu-	be present, unless disturbed or problematic.
ALALAN ponen and	15	×	FACIN	Definitions of Vegetation Strata:
VILLA SATION	<u></u> -	N	FAN	Tree - Woody plants 3 in. (7.6 cm) or more in diameter
Sol Lapo cona doi sis		N	FAIN	at breast height (DBH), regardless of height.
WILPING PITTO			THE	Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
0				Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
2			_	Woody vines - All woody vines greater than 3.28 ft in
£	¢5 =	Total Cove	er	height.
Voody Vine Stratum (Plot size: 30')				
NN				SUL WEL Fick
	<u> </u>	_		Community Type:
·				Hydrophytic
·	- 74	_		Vegetation Present? Yes No
	1	_ = Total	Cover	
Remarks: (Include photo numbers here or on a separate				
Photo # Direc	tion of Phot			

I

	iption: (Describe t	o the depth	needed to docum	ent the inc	dicator or	confirm the	e absence of indic	cators.)	
Depth (inches)	Matrix Color (moist)	%	Color (moist)	dox Featur	res Type ¹	Loc ²	Texture	Rema	arks
		/0		70	Type	200	Texture	T Corre	
n. r	18. 19/						2.6		
0-6	1-5712-1/2	120		-			<u> </u>		
-12	7.5712/2	100				-	R.		
					_				
				(
					_				
					<u> </u>				
					_				
									ra coment
Type: C=Co lydric Soil II	ncentration, D=Depl	letion, RM=R	educed Matrix, CS	=Covered	or Coated	Sand Grain		PL=Pore Lining, r Problematic I	
iyane son n	nuicators.						indicators to	r Froblematic r	iyunc sons :
Histoso			Polyvalue i		ace (S8) (L	RR R,	2 cm Muck	(A10) (LRR K, I	, MLRA 149B)
	pipedon (A2) listic (A3)		MLRA 149 Thin Dark S) (LRR R.	MLRA 149B) 5 cm Muck	rie Redox (A16) vy Peat or Peat (S	33) (LRR K, L, R
Hydrog	en Sulfide (A4)		Loamy Muc	cky Mineral	(F1) (LRR		Dark Surfa	ce (S7) (LRR K,	L)
	d Layers (A5) d Below Dark Surfac	æ (A11)	Loamy Gle Depleted N	yed Matrix Matrix (F3)	(F2)		Polyvalue Thin Dark	Below Surface (S Surface (S9) (LR	88) (LRR K, L)
Thick D	ark Surface (A12)		Redox Dar	k Surface (Iron-Mang	anese Masses (F	12) (LRR K, L, F
Sandy	Mucky Mineral (S1)	Soils (F19) (N	Depleted D	ark Surfac	e(F7)				
F	redmont Floodblain			receione /	181		Mesic Sno	die (TAG) (MI DA	144A, 145, 149
Sandy	Gleyed Matrix (S4)		Redox Dep	icasions (i	0)		Micsid opo		
Sandy (Sandy (Stripped	Gleyed Matrix (S4) Redox (S5) d Matrix (S6)		Redox Dep	163310113 (1	-0)		Red Paren Very Shall	nt Material (TF2) ow Dark Surface	(TF12)
Sandy (Sandy (Stripped	Gleyed Matrix (S4) Redox (S5)		Redox Dep	163310113 (1	-0)		Red Paren Very Shall	t Material (TF2)	(TF12)
Sandy (Sandy (Stripped	Gleyed Matrix (S4) Redox (S5) d Matrix (S6)		Redox Dep		-0)		Red Paren Very Shall	nt Material (TF2) ow Dark Surface	(TF12)
Sandy (Sandy I Stripper Dark Su	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I	MLRA 149B)				bed or proble	Red Parer Very Shall Other (Exp	nt Material (TF2) ow Dark Surface	(TF12)
Sandy (Sandy (Stripped Dark St	Gleyed Matrix (S4) Redox (S5) d Matrix (S6)	MLRA 149B)				bed or proble	Red Parer Very Shall Other (Exp	nt Material (TF2) ow Dark Surface	(TF12)
Sandy (Sandy I Stripped Dark Su Indicators of I Restrictive La	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio	MLRA 149B)				bed or proble	Red Parer Very Shall Other (Exp	nt Material (TF2) ow Dark Surface	(TF12)
Sandy (Sandy (Stripped Dark Su Indicators of (Restrictive La Type:	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Red Parer Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy (Sandy (Stripped Dark Su Indicators of (Restrictive La Type:	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)
Sandy G Sandy I Stripped Dark Su Indicators of I Sestrictive La Type: Depth (inch	Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	MLRA 149B)					Ped Paren Very Shall Other (Exp	nt Material (TF2) ow Dark Surface Jain in Remarks)	(TF12)

roject/Site: Westwood Country Club - 772 North Forest	Road City/County: Amherst/Erie County Sampling Date: September 24, 2012
pplicant/Owner: Mensch Capital Partners, LLC	State: NYSampling Point:
vestigator(s): Scott Livingstone & Jody Celeste	Section, Township, Range: 68.01-1-1
andform (hillslope, terrace, etc.):	Local relief (concave, convex, none):CONCAVE
lope (%): <u><!--</u--> Lat: <u>42,98</u></u>	394 Long: -78.77383 Datum: NAD83
Dil Map Unit Name: COSAN LOAMY F.	ne Sand NWI classification: PFO
	this time of year? Yes X No (If no, explain in Remarks.)
	ignificantly disturbed? Yes No X Are "Normal Circumstances" present? Yes X No
	naturally problematic? Yes NoX (If needed, explain any answers in Remarks.)
UMMARY OF FINDINGS : Attach site map showing	sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes Hydric Soil Present? Yes	No Is the Sampled Area No within a Wetland?
Wetland Hydrology Present? Yes Y	No If yes, optional Wetland Site ID:/0
YDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check	
	Water-Stained Leaves (B9) Drainage Patterns (B10)
	Aquatic Fauna (B13) Moss Trim Lines (B16)
	Marl Deposits (B15) Dry-Season W ater Table (C2) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)
V Water Marks (B1) Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2)
	Thin Muck Surface (C7) Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks) Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	N/a
The second s	Depth (inches): <u>N / 4</u>
Water Table Present? Yes No	Depth (inches): <u>M/A</u> Depth (inches): <u>M/A</u> Wetland Hydrology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring w	all, aerial photos, previous inspections), if available:
Remarks:	

Tree Stratum (Plot size: 30') % Cover Species 7 Status 1 1 1 1 Number of Dominant Species Total Number of Dominant Species 2 1 1 1 1 Total Number of Dominant Species Total Number of Dominant Species 3 1 1 1 1 Total Number of Dominant Species 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 <th>Test Statum 0 32 Cover Seedes2 Status Mumber of Dominant Species 0 Fraction Cover That Are DBL, FACW, or FACS 0 Part of Dominant Species 0 Fraction Cover Species Across All Strata: 5 Provide of Dominant Species 0 Fraction Cover Fraction Cover Species Across All Strata: 5 Cover Fraction Cover Frevalence Index set is > 500 Fraction Co</th> <th>GETATION : Use scientific names of plants.</th> <th>Absolute Dominant Indicator</th> <th>Dominance Test worksheet:</th>	Test Statum 0 32 Cover Seedes2 Status Mumber of Dominant Species 0 Fraction Cover That Are DBL, FACW, or FACS 0 Part of Dominant Species 0 Fraction Cover Species Across All Strata: 5 Provide of Dominant Species 0 Fraction Cover Fraction Cover Species Across All Strata: 5 Cover Fraction Cover Frevalence Index set is > 500 Fraction Co	GETATION : Use scientific names of plants.	Absolute Dominant Indicator	Dominance Test worksheet:
Current of Design and Construction of the construction	(JUVY CS		% Cover Species? Status	
Image: Stratum Image	Image: Stratum Image			That Are OBL, FACW , or FAC: (A)
Image: Stratum Image: Stratum	Image: Species Arrows All Stratu: Species Arrows All Stratu: Species Arrows All Stratu: Species Arrows All Stratu: Percent of Dominant Species Image: Arrows All Stratu: apling/Shrub Stratum (Plot size: _15) Image: Arrows All Stratum (Plot s	Papillus deltalats		Tatal Number of Dominant
Percent of Dominant Species	Percent of Dominant Species Image: Area Coll, FACW, or FAC: Image: Coll, FACW, or FAC:		10 N FAIN-	
Imat Are OBL, FACW, or FAC: Imat Are OBL, FACW, or FAC: Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: OBL species x1 = FACW species x2 = Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: OBL species x3 = Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: Imat Are OBL, FACW, or FAC: Total % Cover of: Multiply bp: Imat Are OBL, FACW, or FAC: Total % Cover Prevalence Index is 7.3.7 Imat Are OBL, FACW applation Multiply fore Set	Intel Are OBL, IFACW, or FAC: 0 Image: Intel Are OBL, IFACW, or FAC: 1 Image: Intel Are OBL, IFACW, or FAC: 1 <t< td=""><td></td><td></td><td>Demont of Demonst Section (10.0)</td></t<>			Demont of Demonst Section (10.0)
Prevalence index worksheet: Total %. Cover of Multiply by: Biling/Shub Stratum (Piot size: _15')) FAC worksheet: CAMADS (Intersection) Sectors X =	Prevalence Index worksheet: Total % Cover of Multiply by: OBL species x1 = PACW species x2 = PACW species x3 = PACW species x4 = UP L species x5 = Column Totals: (A) Prevalence Index is < 3.0'			That Are OBL, FACW, or FAC: (A/I
Image: Stratum Plot size:15	Image: Stratum (Plot size: 15) Image: Stratum (Plot size: 15) Image: Stratum (Plot size: 15) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17) Image: Stratum (Plot size: 17)			
Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15') Image: Stratum (Plot size: 15')	Image: Stratum (Plot size: 15) Image: Stratum (Plot size: 15) Image: Stratum (Plot size: 15) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 15) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (Plot size: 16) Image: Stratum (P			Prevalence Index worksheet:
poling/Shrub Stratum (Plot size: 15) Y	poling/Shrub Stratum (Plot size: 15)			
Jandy Order Yester. Yester. <td>Jandy Gradient Wrester. 12 Autrice Stratum Pack species x 4 =</td> <td></td> <td> = Total Cover</td> <td></td>	Jandy Gradient Wrester. 12 Autrice Stratum Pack species x 4 =		= Total Cover	
A V WWW homeson is a separate sheet.) Image: Second Se	Avery provide support Y = Total Cover PACU species x + # =	pling/Shrub Stratum (Plot size: 15'	_) _ /	
UVPUCUS provember x 5 =	UPL species x.5 = Column Totals: (A) Prevalence Index = B/A = Hydrophytic Vegetation Indicators: Rapid Test for Hydrophytic Vegetation Dominance Test is >50% Prevalence Index = B/A = Hydrophytic Vegetation Indicators: Rapid Test for Hydrophytic Vegetation Dominance Test is >50% Prevalence Index is < 3.0°	FIAXIAUS PENALMURAL	A S CAR	
OPL species X > = Column Totals: (A) Prevalence Index = B/A =	UPL speces X3 =	querus phono no	Ja felde	
Prevalence Index = B/A =	Prevalence Index = B/A =	the state of the s		
Prevalence Index = B/A =	Prevalence Index = B/A =			Column Totals: (A) (B
Hydrophytic Vegetation Indicators:	Hydrophytic Vegetation Indicators:			Prevalence Index = B/A =
= Total Cover = Total Cover Dominance Test is >50% Prevalence Index is < 3.0' Morphological Adaptations '(Provide supportind data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation '(Explain data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation '(Explain data in Carbon Strate:	= Total Cover			
= Total Cover Prevalence Index is < 3.01 Morphological Adaptations ³ (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain data in Remarks or on a separate sheet)	= Total Cover Prevalence Index is < 3.0 ¹ Morphological Adaptations ¹ (Provide supportin data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain) indicators of hydric soil and wetland hydrology mu be present, unless disturbed or problematic. Definitions of Vegetation Strata: Tree - Woody plants 3 in. (7.6 cm) or more in diame at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardl of size, and woody plants less than 3.28 ft tall. Woody vines Stratum (Plot size:30') = Total Cover marks: (Include photo numbers here or on a separate sheet.)			
b Stratum (Plot size: 5')	b Stratum (Plot size: 5')		= Total Cover	
Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constraint of the stratum (Plot size: _30') Image: Constrate of the stratum (Plot size: _30') Image: Constrate of the stratum (Plot size: _30') Image: Constrate of the stratum (Plot size: _30') Image: Constrate of the stratum (Plot size: _30') Image: Constrate of the stratum (Plot size: _30') Image: Constrate of the stratum (Plot size: _30') Image: Constrate of the stratum (Plot size: _30') Image: Constrate of the stratum (Plot size: _30') Image: Constrate of the strate of the	Morphological paragraphics of problematic sheet) data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain) Indicators of hydric soil and wetland hydrology mills be present, unless disturbed or problematic. Definitions of Vegetation Strata: Tree - Woody plants is in. (7.6 cm) or more in diame at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardl dis ze, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody talls the stand by targetation greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody targetation greater than 3.28 ft tall. Woody targetation greater than 3.28 ft tall. Woody targetation greater than 3.28 ft tall. woody greater than 3.28 ft tall. woody plants ft targetation greater than 3.28 ft tall. woody greater than 3.28 ft tall. woody greater than 3.28 ft tall. woody targetation greater than 3.28 ft tall. woody targetatin greater than	+ Stratum (Plot size: 6')		
Problematic Hydrophytic Vegetation ¹ (Explain Indicators of hydric soil and wetland hydrology m be present, unless disturbed or problematic. Definitions of Vegetation Strata: Tree - Woody plants 3 in. (7.6 cm) or more in diam at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 height. Community Type:	Problematic Hydrophytic Vegetation ¹ (Explain) Indicators of hydric soil and wetland hydrology miles be present, unless disturbed or problematic. Definitions of Vegetation Strata: Tree - Woody plants 3 in. (7.6 cm) or more in diame at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft full. Herb - All herbaceous (non-woody) plants, regardl of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody plants less then 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All	Contraction (Plot size	8 V Mau	
	indicators of hydric soil and wetland hydrology multiple present, unless disturbed or problematic. Definitions of Vegetation Strata: Tree - Woody plants 3 in. (7.6 cm) or more in diame at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardle of size, and woody vines greater than 3.28 ft tall. Woody vines Stratum (Plot size:30') Mode Stratum (Plot size:30') Mode Stratum (Plot size:30') Mode photo numbers here or on a separate sheet.)	FOR LOADER ANTRON	13. 5 15	Problematic Hydrophytic Vegetation ¹ (Explain)
Initialization of type solution of the solution	Indicators of hydro solid and weater hydrology in the present, unless disturbed or problematic. Definitions of Vegetation Strata: Tree - Woody plants 3 in. (7.6 cm) or more in diame at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardle of size, and woody plants less than 3.28 ft tall. Woody vines Stratum (Plot size:30')			Frank States and States
Definitions of Vegetation Strata: Tree - Woody plants 3 in. (7.6 cm) or more in diam at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regard of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Wegetation Present? Yes	Definitions of Vegetation Strata: Tree - Woody plants 3 in. (7.6 cm) or more in diame at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardle of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody times - All woody vines greater than 3.28 ft tall. Weight. Gummarks:			Indicators of hydric soil and wetland hydrology mus
Image: Stratum (Plot size:)	Tree - Woody plants 3 in. (7.6 cm) or more in diame at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardle of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft height. woody vines - All woody vines greater than 3.28 ft height. Community Type:		ار المنتج اليسب المنتقد	be present, unless disturbed or problematic.
Image: Stratum (Plot size:30') Image: Stratu	Image: Stratum (Plot size:30') Image: Stratu	2		Definitions of Vegetation Strata:
at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regard of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Weody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Weody vines - All woody vines greater than 3.28 ft tall. Weody vines - All woody vines greater than 3.28 ft tall. Weody vines - All woody vines greater than 3.28 ft tall. Weody vines - All woody vines greater than 3.28 ft tall. Weody vines - All woody vines greater than 3.28 ft tall. Weody vines - All woody vines greater than 3.28 ft tall. Weight - The second cover Weight - The second cover Weight - The se	at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardlest of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. Weight. Support Yegetation Pro Hrav Support Yegetation Present? Yes Yes woody photo numbers here or on a separate sheet.)			Tree - Woody plants 3 in. (7.6 cm) or more in diameter
Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regard of size, and woody plants less than 3.28 ft tall. Woody vines Stratum (Plot size: _30') MA	Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardle of size, and woody plants less than 3.28 ft tall. Woody vines Stratum (Plot size: _30') MA			at breast height (DBH), regardless of height.
and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regard of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 height. Community Type:	and greater than 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardle of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft height. Community Type:			Sapling/shrub - Woody plants less than 3 in DBH
Herb - All herbaceous (non-woody) plants, regard of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 height. woody Vine Stratum (Plot size:30') Market	Herb - All herbaceous (non-woody) plants, regardled of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft tall. woody Vine Stratum (Plot size:30') NA			and greater than 3.28 ft (1 m) tall.
image: stratum image: stratum of size, and woody plants less than 3.28 ft tall. image: stratum image: stratum image: stratum image: stratum image: stratum (Plot size:) image: stratum image: stratum image: stratum image: stratum (Plot size:) image: stratum	image: stratum image: stratum of size, and woody plants less than 3.28 ft tall. image: stratum image: stratum image: stratum image: stratum image: stratum image: stratum image: stratum image: stratum image: stratum image: stratum ima			
Woody vines - All woody vines greater than 3.28 body Vine Stratum (Plot size:30') MA Community Type:	Woody vines - All woody vines greater than 3.28 theight. woody Vine Stratum (Plot size:30') NA Community Type: Woody vines - All woody vines greater than 3.28 theight. Community Type: Yes No Total Cover			of size, and woody plants less than 3.28 ft tall.
= Total Cover	= Total Cover			
NA Community Type: PF0 Hru Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Image: Community Type: Community Type: Image: Community Type: Image: Communit	NA Community Type: PFB HW SWAY Hydrophytic Vegetation Present? Yes No		= Total Cover	hoight.
NA Community Type: PF0 Hku Image: Superior of the second seco	NA Community Type: PFB HW SWAY Hydrophytic SWAY Hydrophytic Vegetation Present? Yes No	ody Vine Stratum (Plot size: 30')	10 soft
	Community Type:		.,	1 - 2 or aprop
	Hydrophytic Vegetation Present? Yes No			Community Type: PF0 Hrw
Image: Weight of the second	Image: Wegetation Vegetation Image: Wegetation Present? Yes No			Swan
Image: Second	Image: marks: Image: Present? Yes No	1		
emarks: (Include photo numbers here or on a separate sheet.)	emarks: (Include photo numbers here or on a separate sheet.)			
		N	= Total Cover	
hoto # Direction of Photo	hoto # Direction of Photo	marks: (Include photo numbers here or on a sepa	arate sheet.)	
		hoto # D	irection of Photo	

	ription: (Describe t	o the depti				confirm th	ne absence of i	ndicators.)
Depth	Matrix	0/		edox Feature	s Type ¹	Loc ²	Tosturo	Remarks
nches)	Color (moist)	%	Color (moist)	%	туре	LOC	Texture	Remarks
		2.2	1					
1-12	10404/2	95	107R3/8	5	C	M	5:1	
	1	1000						
		1.1.1		Sec. 1		1000		
		-						
				-				
					_			
	1					1		
						-		
								and the second second second
	ncentration, D=Dep	letion, RM=	Reduced Matrix, C	S=Covered o	r Coated	Sand Grai		on: PL=Pore Lining, M=Matrix.
dric Soil I	ndicators:						Indicator	s for Problematic Hydric Soils ³ :
Histos	(14)		Polyvalue	Below Surfac	e (S8) (1	RR R.	2 cm 1	Muck (A10) (LRR K, L, MLRA 149B)
	Epipedon (A2)		MLRA 14	9B)			Coast	Prairie Redox (A16) (LRR K, L, R)
Black H	Histic (A3)			Surface (S9)			B) 5 cm M	Mucky Peat or Peat (S3) (LRR K, L, R
	en Sulfide (A4) d Lavers (A5)			ucky Mineral ((K,L)	Dark s	Surface (S7) (LRR K, L)
				eved Matrix (F	-2)		Polyva	alue Below Surface (S8) (LRR K. L)
Deplet	ed Below Dark Surfac	e (A11)		eyed Matrix (F Matrix (F3)	=2)			alue Below Surface (S8) (LRR K, L) Dark Surface (S9) (LRR K, L)
Deplet	ed Below Dark Surfac Dark Surface (A12)	æ (A11)	Redox Da	Matrix (F3) ark Surface (F6	6)		Thin D	Dark Surface (S9) (LRR K, L)
Deplete Thick I Sandy	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1)		Z Depleted Redox Da Depleted	Matrix (F3)	6)		Thin D	Dark Surface (S9) (LRR K, L)
Deplet Thick I Sandy	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain		MLRA 149B)	Matrix (F3) ark Surface (F6 Dark Surface	6) (F7)		Thin D Iron-M)ark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R
Deplete Thick I Sandy Sandy Sandy	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5)		MLRA 149B)	Matrix (F3) ark Surface (F6	6) (F7)		Thin D Iron-M Mesic Red P	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149E arent Material (TF2)
Deplete Thick I Sandy Sandy Sandy Sandy Strippe	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) Id Matrix (S6)	Soils (F19)	(MLRA 149B) MLRA 149B)	Matrix (F3) ark Surface (F6 Dark Surface	6) (F7)		Thin D Iron-M Mesic Red P Very S	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149E arent Material (TF2) Shallow Dark Surface (TF12)
Deplete Thick I Sandy Sandy Sandy Sandy Strippe	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5)	Soils (F19)	(MLRA 149B) MLRA 149B)	Matrix (F3) ark Surface (F6 Dark Surface	6) (F7)		Thin D Iron-M Mesic Red P Very S	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149E arent Material (TF2)
Deplete Thick I Sandy Sandy Sandy Sandy Strippe	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) Id Matrix (S6)	Soils (F19)	(MLRA 149B) MLRA 149B)	Matrix (F3) ark Surface (F6 Dark Surface	6) (F7)		Thin D Iron-M Mesic Red P Very S	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149E arent Material (TF2) Shallow Dark Surface (TF12)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) od Matrix (S6) urface (S7) (LRR R, I	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Thin E Iron-M Red P Very S Other)ark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149E arent Material (TF2) Shallow Dark Surface (TF12)
Deplete Thick I Sandy Sandy Sandy Sandy Sandy Sandy Dark S	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Thin E Iron-M Red P Very S Other)ark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149E arent Material (TF2) Shallow Dark Surface (TF12)
Deplete Thick I Sandy Sandy Sandy Sandy Sandy Sandy Dark S ndicators of estrictive L	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetatio ayer (if observed):	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Thin E Iron-M Red P Very S Other)ark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149E arent Material (TF2) Shallow Dark Surface (TF12)
Deplete Thick I Sandy Sandy Sandy Sandy Sandy Dark S Dark S ndicators of estrictive L Type:	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149E arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Sandy Sandy Sandy Sandy Dark S Dark S ndicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other)ark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149E arent Material (TF2) Shallow Dark Surface (TF12)
Deplete Thick I Sandy Sandy Sandy Sandy Sandy Sandy Sandy Dark S Dark S ndicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149E arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S Dark S Addicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149 arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S Dark S Dark S	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149 arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S Dark S Addicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149) arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S Dark S Dark S	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149 arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S Dark S Dark S	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149) arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S Dark S Addicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149) arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S ndicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149) arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Sandy Sandy Sandy Dark S Dark S Dark S Dark S Dark S Dark S Dark S Dark S Dark S	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149 arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S ndicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149) arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Sandy Sandy Sandy Dark S Dark S Dark S Dark S Dark S Dark S Dark S Dark S Dark S	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149) arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Sandy Sandy Dark S Dark S ndicators of estrictive L Type:	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149 arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Sandy Sandy Sandy Sandy Dark S Dark S ndicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149) arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Sandy Sandy Sandy Sandy Dark S Dark S ndicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, R Spodic (TA6) (MLRA 144A, 145, 149 arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S Dark S Addicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149 arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)
Deplete Thick I Sandy Sandy Sandy Strippe Dark S Dark S Addicators of estrictive L Type: Depth (inc	ed Below Dark Surfac Dark Surface (A12) Mucky Mineral (S1) Piedmont Floodplain Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) urface (S7) (LRR R, I hydrophytic vegetation ayer (if observed): NON E	Soils (F19) (MLRA 1498	Depleted Redox Da Depleted (MLRA 149B) Redox De	Matrix (F3) Irk Surface (Ff Dark Surface epressions (F8	6) (F7) I)	bed or prob	Iron-M Mesic Red P Very S Other	Dark Surface (S9) (LRR K, L) langanese Masses (F12) (LRR K, L, F Spodic (TA6) (MLRA 144A, 145, 149 arent Material (TF2) Shallow Dark Surface (TF12) (Explain in Remarks)

roject/Site: Westwood Country Club - 772 N	orth Forest Road City/County	: Amherst/Erie County	NO
pplicant/Owner: <u>Mensch Capital Partners, L</u>	LC State	e: NY	Sampling Point:D
vestigator(s): Scott Livingstone & Jody Cele	the second se	ction, Township, Range: _	
andform (hillslope, terrace, etc.):A	KE PLADN Loc	al relief (concave, convex	, none): CONVEX
lope (%): <u>1-3</u> Lat: <u>4</u> 2	2.98407 Long:	-78.79289	Datum: NAD83
oil Map Unit Name: COSAN LOAN	1 Fine Sand 1	WW I classification:	
re climatic / hydrologic conditions on the site			no, explain in Remarks.)
			e "Normal Circumstances" present? Yes X No
			(If needed, explain any answers in Remarks.)
UMMARY OF FINDINGS : Attach site map	showing sampling point loca	ations, transects, import	ant features, etc.
Hydrophytic Vegetation Present? Y	es No X	Is the Sampled Area	2.2
() stopping to a generative state	es NoX	within a Wetland?	Yes No _X
the second se	es No T	If yes, optional Wetland	Site ID:
Remarks: (Explain alternative procedures h	ere or in a separate report.)		
YDROLOGY			
Wetland Hydrology Indicators:	00000		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Cracks (B6)
Surface Water (A1)	Water-Stained Leave		Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)
Saturation (A3)	Marl Deposits (B15) Hydrogen Sulfide Od		Dry-Season W ater Table (C2) Crayfish Burrows (C8)
Water Marks (B1) Sediment Deposits (B2)		res on Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduce	COLLENCE STATE CONTRACTOR STATE	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	_ Recent Iron Reduction	on in Tilled Soils (C6)	Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (0	and the second sec	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (E		emarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface	(B8)		FAC-Neutral Test (D5)
Field Observations:	No Depth (inches):	A	
		TA	
	No / Depth (inches): /		Hydrology Present? Yes No
(includes capillary fringe)			
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, prev	vious inspections), if availa	able:
Remarks:			

Sampling Point:

8

Tree Stratum (Plot size: 30')	Absolute Dominant Indicator % Cover Species? Status	Dominance Test worksheet:
1 TILLE FORCELLAND	15 V PRA	Number of Dominant Species / (A)
Rhamous pasterna	15 V 1900	Total Number of Dominant 7
3. PIDVILI dellaronals	25 V PAC	Species Across All Strata: (B)
VIMUS Americant	10 N FRONT	Percent of Dominant Species 14
ALLY DELIVERO	10 N FAL-	That Are OBL, FACW , or FAC: (A/B)
Purridiva	10 N FAC	Prevalence Index worksheet:
		Total % Cover of:Multiply by:
· · · · · · · · · · · · · · · · · · ·	85 = Total Cover	OBL species x1 =
Sapling/Shrub Stratum (Plot size: 15')		FACW species 10 x2 = 20
ROAMAN CAD PRETUR	35 V FAW	A Second Se
ANDER ANT SOM	12 × FACE	
		UPL species 0 x 5 = 0 Column Totals: 170 (A) 65 (B)
4		
5		Prevalence Index = B/A = 6 Z
5 5		Hydrophytic Vegetation Indicators:
7		Rapid Test for Hydrophytic Vegetation
	= Total Cover	Dominance Test is >50%
Lash Stratum (Plat size: 5'		Prevalence Index is < 3.0 ¹
Herb Stratum (Plot size: <u>5'</u>) 1. Loni Carro	15 8 Ma	 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
2 Rhoma Conduit IIP	12 3 14-1	Problematic Hydrophytic Vegetation ¹ (Explain)
3		Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
4		
5		Definitions of Vegetation Strata:
6		Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
7		
B		Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
9		
10		Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11		Woody vines - All woody vines greater than 3.28 ft in
12	1981 (August 1997)	height.
	= Total Cover	
Woody Vine Stratum (Plot size: 30')	15. 4 Ale	SVC .NAWOOD
1. Vitis contract		Community Type:
2		
3		Hydrophytic Vegetation
	15	Present? Yes No
4		
4	= Total Cover	
4		

Project Code: W1109b

Depth Matrix Redox Features Color (moist) % Color (moist) % Type' Loc ² Texture Remarks Ø - 6 107/4/2 100 4.1	rofile Descr	iption: (Describe to	o the depth	needed to document	the indicator or	confirm th	e absence of inc	licators.)	
Image: Solution of the second seco									
vpe: C=Concentration. D=Depletion. RM=Reduced Matrix. CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining. M=Mat vpric Soil Indicators: Indicators for Problematic Hydric S Histic Epipedon (A2) MLRA 149B) Histic Epipedon (A2) MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Thin Dark Surface (F6) Thin Dark Surface (F7) Polyeatue Below Dark Surface (S7) Depleted Dark Surface (F7) Sandy Redox (S5) Redox Depressions (F8) Sandy Redox (S5) Redox Depressions (F8) Sandy Redox (S5) Redox Depressions (F8) Sandy Redox (S5) Cast Praine Remarks) ndicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. estrictive Layer (if Observed): Type: Type: MCANE Depth (inches): M/A			%			Loc ²	Texture	Remarks	
ype: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. *Location: PL=Pore Lining, M=Mat ydric Soil Indicators: Indicators for Problematic Hydric S Histic Epipedon (A2) MLRA 1498) Histic Pipedon (A2) MLRA 1498) Histic Pipedon (A2) MLRA 1498) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR R, MLRA 1498) S cm Mucky Peat or Peat (S3) (LRR K, L) Depleted Below Dark Surface (A1) Depleted Matrix (F2) Thin Dark Surface (F3) Thin Dark Surface (F6) Stratified Layers (A5) Depleted Matrix (F2) Think Surface (A12) Redox Dark Surface (F6) Sandy Mcdx Mineral (S1) Depleted Dark Surface (F6) Sandy Mcdx (S6) Redox Depressions (F8) Sandy Kedx (S5) Redox Depressions (F8) Sandy Kedx (S5) Other (Explain in Remarks) ndicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. settrictive Layer (if Observed): Type: Type: M/A Depth (inches): M/A									
ype: C=Concentration. D=Depletion, RM=Reduced Matrix. CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Mat ydric Soil Indicators: Indicators for Problematic Hydric S Histic Epipedon (A2) MLRA 149B) Histic Pipedon (A2) MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Thic Dark Surface (A12) Redox Zerk Surface (F5) Phydrogen Suffac (A12) Redox Zerk Surface (F6) Stratified Layers (A12) Redox Dark Surface (F7) Polyvalue Below Surface (F3) Mexic Appleted Dark Surface (F7) Polyvalue Below Attrix (F3) Thin Dark Surface (F7) Sandy Redox (S5) Redox Depressions (F8) Sandy Redox (S5) Redox Depressions (F8) Stratified Layers (F1) Depleted Dark Surface (F7) Depleted Matrix (S6) Redox Depressions (F8) Sandy Redox (S5) Redox Depressions (F8) Stratified Layers (If Observed): Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Mcicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. estrictive Layer (If Obs	26 /		1.6				2 1		
Ype: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Mat ydric Soil Indicators: Indicators for Problematic Hydric S Histic Epipedon (A2) MLRA 149B) Histic Epipedon (A2) MLRA 149B) Stratified Layers (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) Learny Gleyed Matrix (F2) Thio Dark Surface (A12) Redox Dark Surface (F5) Stratified Layers (A12) Redox Dark Surface (F6) Sandy Redox (S5) Learny Gleyed Matrix (F3) Sandy Redox (S5) Redox Depressions (F8) Sandy Redox (S5) Redox Depressions (F8) Stratice (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. estrictive Layer (If Observed): Type: Type: MCANE Depth(inches): M/A	1-6	10/1-1/2	100				Sect -		
ype: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. *Location: PL=Pore Lining, M=Mat ydric Soil Indicators: Indicators for Problematic Hydric S Histic Epipedon (A2) MLRA 1498) Histic Pipedon (A2) MLRA 1498) Histic Pipedon (A2) MLRA 1498) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR R, MLRA 1498) S cm Mucky Peat or Peat (S3) (LRR K, L) Depleted Below Dark Surface (A1) Depleted Matrix (F2) Thin Dark Surface (F3) Thin Dark Surface (F6) Stratified Layers (A5) Depleted Matrix (F2) Think Surface (A12) Redox Dark Surface (F6) Sandy Mcdx Mineral (S1) Depleted Dark Surface (F6) Sandy Mcdx (S6) Redox Depressions (F8) Sandy Kedx (S5) Redox Depressions (F8) Sandy Kedx (S5) Other (Explain in Remarks) ndicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. settrictive Layer (if Observed): Type: Type: M/A Depth (inches): M/A	6-12	1548 514	ide				Sie-		
ydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvatue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449, 1 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1 Sandy Redox (S5) Other (Explain in Remarks) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes Nc Depth (inches): M/A Mesic Spodic Present? Yes Nc	9.00	-10/10021	100						
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Suffide (A4) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449B) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1) Stripped Matrix (S6) Mesic Spodic (TA6) (MLRA 144B) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Mesic Soil Present? Yes NC Depth (inches): M/A Hydric Soil Present? Yes Nc </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Coast Praine Redox (A16) (LRR K, L) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449B) Sandy Redox (S5) Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Mesic Spodic (TA6) (MLRA 144A, 1) Depleted Dark Surface (S7) (LRR R, MLRA 149B) Mcicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Hydric Soil Present? Yes Nc			1000						
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Coast Praine Redox (A16) (LRR K, L) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449B) Sandy Redox (S5) Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Mesic Spodic (TA6) (MLRA 144A, 1) Depleted Dark Surface (S7) (LRR R, MLRA 149B) Mcicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Hydric Soil Present? Yes Nc									
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449, 1 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1 Stripped Matrix (S6) Other (Explain in Remarks) Other (Explain in Remarks) Adicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Strippet (In observed): Type: M/A Hydric Soil Present? Yes NC	_								
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449, 1 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1 Stripped Matrix (S6) Other (Explain in Remarks) Other (Explain in Remarks) Adicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Strippet (In observed): Type: M/A Hydric Soil Present? Yes NC									
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449, 1 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1 Stripped Matrix (S6) Other (Explain in Remarks) Other (Explain in Remarks) Adicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Strippet (In observed): Type: M/A Hydric Soil Present? Yes NC									
dric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, Depited Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, * Stripped Matrix (S6) Mesic Spodic (TA6) (MLRA 144A, * Depleted Dark Surface (S7) (LRR R, MLRA 149B) dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Strictive Layer (If observed): Type: M/A Hydric Soil Present? Yes NC Depth (inches): M/A Hydric Soil Present? Yes NC	1								
dric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, Depited Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, * Stripped Matrix (S6) Mesic Spodic (TA6) (MLRA 144A, * Depleted Dark Surface (S7) (LRR R, MLRA 149B) dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Strictive Layer (If observed): Type: M/A Hydric Soil Present? Yes NC Depth (inches): M/A Hydric Soil Present? Yes NC			1.00						
dric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Thic Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Hedrox (S5) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1) Stripped Matrix (S6) Mesic Spodic (TA6) (MLRA 144B) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Adicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators (Y coil Present? Yes NC Type: MCM Hydric Soil Present? Yes NC No									
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449B) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1) Stripped Matrix (S6) Mesic Spodic (TA6) (MLRA 144B) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Image: Masses (Y es	_		S						
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449B) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1) Stripped Matrix (S6) Mesic Spodic (TA6) (MLRA 144B) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Image: Masses (Y es									
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Coast Praine Redox (A16) (LRR K, L) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449B) Sandy Redox (S5) Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Mesic Spodic (TA6) (MLRA 144A, 1) Depleted Dark Surface (S7) (LRR R, MLRA 149B) Mcicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Hydric Soil Present? Yes Nc									
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449, 1 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1 Stripped Matrix (S6) Other (Explain in Remarks) Other (Explain in Remarks) Adicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Strippet (In observed): Type: M/A Hydric Soil Present? Yes NC			1.1						
Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA Coast Praine Redox (A16) (LRR K, S cm Mucky Peat or Peat (S3) (LRR K, Hydrogen Sulfide (A4) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 1449B) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1) Stripped Matrix (S6) Mesic Spodic (TA6) (MLRA 144B) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Image: Masses (Y es	vne: C=Co	ncentration D=Depl	etion RM=F	Reduced Matrix. CS=C	overed or Coated	Sand Grai	ns. ² Location	: PL=Pore Lining, M=	Matrix.
Histosol (A1) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 2 cm Muck (A10) (LRR K, L, MLRA Coast Prairie Redox (A16) (LRR K, Coast Prairie Redox (S9) (LRR K, Coast Prairie Redox (A16) (LRR K, Coast Prairie Redox (A16) (LRR K, Coast Prairie Redox (A16) (LR K, Cost Prairie Redox (A12) (LR K, Cost Prairie Redox (A12) (LR K, Cost									
Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, K, Black Histic (A3) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LR K, 1) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LR K, 1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 1448, 1) Sandy Redox (S5) Mesic Spodic (TA6) (MLRA 1448) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Adicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) mdicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes No Depth (inches): M/A Hydric Soil Present? Yes No									
Black Histic (A3)					ow Surface (S8) (I	.RR R,			
Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LRI S) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Nesic Spodic (TA6) (MLRA 149B) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1 Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) mdicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Type: NCME Hydric Soil Present? Yes Note					face (SO) /I BD D	MI DA 140		rairie Redox (A16) (LRF	RR, L, R)
Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LRI Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Mesic Spodic (TA6) (MLRA 149B) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1 Redox Depressions (F8) Stripped Matrix (S6) Nesic Spodic (TA6) (MLRA 149B) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) mdicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes No Type: NCME NCME NCME Depth (inches): M/A Hydric Soil Present? Yes Nc	- Black H	en Sulfide (A4)		Loamy Mucky	Mineral (F1) (LRF	K.L)	Dark Su	rface (S7) (LRR K. L)	
				Loamy Gleyed	Matrix (F2)		Polyvalu	e Below Surface (S8) (LRR K, L)
Sandy Mucky Mineral (S1)			æ (A11)						
							Iron-Ma	nganese masses (F12)	(LKK K, L,
Sandy Gleyed Matrix (S4) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 1 Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Very Shallow Dark Surface (TF12) Other (Explain in Remarks)	Sanuy I	Piedmont Floodplain	Soils (F19) (I	ALRA 149B)	Coundoe (i i j				
Stripped Matrix (S6)	Sandy (Gleyed Matrix (S4)	Carl in State	Redox Depres	sions (F8)		Mesic S	podic (TA6) (MLRA 144	IA, 145, 149
Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. estrictive Layer (if observed): Type:							Red Par	ent Material (TF2) allow Dark Surface (TF)	12)
Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. estrictive Layer (if observed): Type:			MLRA 149B)				Other (E	xplain in Remarks)	1-1
estrictive Layer (if observed): Type:									
estrictive Layer (if observed): Type: Depth (inches):/ダ Hydric Soil Present? Yes No									
estrictive Layer (if observed): Type: Depth (inches):/月 Hydric Soil Present? Yes No	ndicators of I	hydrophytic vegetatio	n and wetlan	d hydrology must be pre	esent, unless distu	rbed or prob	lematic.		
Type: NONE Depth (inches): N/A Hydric Soil Present? Yes No									
Depth (inches):N/A No							In the second second		
				-					11 ×
emarks:	Depth (inch	nes): <u>MIM</u>		-			Hydric Soil Pre	sent? Yes	No X
	marks:								

roject/Site: Westwood Country Club - 772 North Fore	est Road City/County: Amherst/I	Erie County	Sampling Date: Se	eptember 24, 2012
pplicant/Owner: Mensch Capital Partners, LLC	State: NY		Sampling Point:	D9
vestigator(s): Scott Livingstone & Jody Celeste	Section, Town	nship, Range: 68.0	1-1-1	
ndform (hillslope, terrace, etc.): LAKE P	LAIN Local relief (co	oncave, convex, nor	ne): <u>PONCAL</u>	19
ope (%): 0 Lat: 4/2,9855		8, 77297		NAD83
Il Map Unit Name: COSHID LOANT	Fine Sand NWI classi	A	Contraction of the second s	
			ovelain in Domark	-)
e climatic / hydrologic conditions on the site typical f				
e Vegetation, Soil, or Hydrology				
e Vegetation, Soil, or Hydrology	naturally problematic? Yes	NoX_ (If n	eeded, explain any	answers in Remarks.)
JMMARY OF FINDINGS : Attach site map showing	ng sampling point locations, tran	nsects, important	features, etc.	
Hydrophytic Vegetation Present? Yes	within a	ampled Area a Wetland?	Yes /	No
Hydric Soil Present? Yes			110	
Wetland Hydrology Present? Yes Remarks: (Explain alternative procedures here or in		optional Wetland Site	+ID:	
YDROLOGY			_	
Vetland Hydrology Indicators:			Secondary Indicato	ors (minimum of two required)
Primary Indicators (minimum of one is required; che	ck all that apply)		Surface Soil Crac	cks (B6)
Surface Water (A1)	Water-Stained Leaves (B9)		Drainage Pattern	s (B10)
High Water Table (A2)	Aquatic Fauna (B13)	-	Moss Trim Lines	(B16)
Saturation (A3)	Marl Deposits (B15)		Dry-Season W at	er Table (C2)
C Water Marks (B1)	_ Hydrogen Sulfide Odor (C1)		_ Crayfish Burrows	
Sediment Deposits (B2)	_ Oxidized Rhizospheres on Livin			e on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled		Stunted or Stress Geomorphic Pos	
Algal Mat or Crust (B4) Iron Deposits (B5)	Thin Muck Surface (C7)	50lis (60)	Shallow Aquitaro	
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)		Microtopographic	the second se
Sparsely Vegetated Concave Surface (B8)	,		FAC-Neutral Tes	
Field Observations:	J.			
Surface Water Present? Yes No 👱	_ Depth (inches):	<		
Nater Table Present? Yes No		 1	A State of the	
	Depth (inches):	Wetland Hyd	rology Present?	Yes No
includes capillary fringe) Describe Recorded Data (stream gauge, monitoring	well, aerial photos, previous inspe	ections), if available:		
2				
Remarks:				

Project Cod	e: W	1109	b
--------------------	------	------	---

Sampling Point:

Tree Stratum (Plot size: 30')	Absolute Dominant Indicator % Cover Species? Status	Dominance Test worksheet:
Frayings secondaria	30 Y MAN	Number of Dominant Species That Are OBL, FACW , or FAC: (A)
DVALUE ON SURVE	20 V FALL	Total Number of Dominant 7 (B)
		Percent of Dominant Species (00) That Are OBL, FACW , or FAC: (A/B)
		Prevalence Index worksheet:
		Total % Cover of: Multiply by:
	Sa = Total Cover	OBL species x 1 =
apling/Shrub Stratum (Plot size: 15!)	IC V GI	FACW species x 2 =
FERLING AMPSAVANCA	13 × Man	FAC species x 3 =
Cornes Services	5 V Fille	FACU species x 4 =
		UPL species x 5 =
		Column Totals: (A) (B)
		Prevalence Index = B/A =
		Hydrophytic Vegetation Indicators:
	20 - Table	Rapid Test for Hydrophytic Vegetation Dominance Test is >50%
	= Total Cover	Prevalence Index is < 3.0 ¹
All (Plot size: <u>5'</u>)	5 N PAY	Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
P.Mar 1+14, 1120, 22	S N FMA	Problematic Hydrophytic Vegetation ¹ (Explain)
Actor Survey	15 V 194	
Acron and	30 Y PAW	Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
APAIR - AMOND FRICE	10 N ERG	Definitions of Vegetation Strata:
Lethor Juliana	15 Y 1814	Tree - Woody plants 3 in. (7.6 cm) or more in diameter
Entreman whether the	S N NJ	at breast height (DBH), regardless of height,
Zannesing governments	S N FFL	Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
),		Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
l,	<u> </u>	
2		Woody vines - All woody vines greater than 3.28 ft in height.
	= Total Cover	
/oody Vine Stratum (Plot size: <u>30'</u>)		Community Type: She MARSH
		Community Type:
1		Hydrophytic
		Vegetation
V V	~	Present? Yes No No
	= Total Cover	
Remarks: (Include photo numbers here or on a separate s	heet.)	

US Army Corps of Engineers

Northcentral and Northeast Region - Interim Version

Sampling Point:

134

Depth	Matrix		Rec	dox Feature	es		100 C	
0 7	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
			1					
3-3	10723(1	98	1072518	2	C	m	5.2	
5-12	10725/3	70	1071516	10	C	A	her	
-			IOTRE TE	20	5	Mr.		
						1.10		
		,						
				-				
				· ·				
				-	_			
me: C=Co	oncentration, D=Dep	letion RM=R	educed Matrix, CS	=Covered o	or Coated	Sand Gra	ins. ² Location:	PL=Pore Lining, M=Matrix.
	ndicators:							r Problematic Hydric Soils ³ :
Histoso	N/A1)		Polyvalue	Below Surfac	ce (58) /I	RRR	2 cm Muc	k (A10) (LRR K, L, MLRA 149B)
Histic E	Epipedon (A2)		MLRA 149	B)			Coast Pra	irie Redox (A16) (LRR K, L, R)
	Histic (A3) gen Sulfide (A4)		Loamy Muc	Surface (S9) cky Mineral ((F1) (LRR	MLRA 149 R K, L)	Dark Surfa	ky Peat or Peat (S3) (LRR K, L, F ace (S7) (LRR K, L)
Stratifie	ed Layers (A5) ed Below Dark Surfac	~ (411)	Loamy Gle	yed Matrix (F2)		Polyvalue	Below Surface (S8) (LRR K, L) Surface (S9) (LRR K, L)
Thick D	Dark Surface (A12)	Je (A11)	Redox Darl	k Surface (F				anese Masses (F12) (LRR K, L, F
Sandy	Mucky Mineral (S1) Piedmont Floodplain	Soils (F19) (M	/LRA 149B)	ark Surface				
Sandy	Gleyed Matrix (S4) Redox (S5)	2-1-1- Que -	Redox Dep	ressions (F8	3)		Mesic Spo Red Paren	odic (TA6) (MLRA 144A, 145, 149 nt Material (TF2)
Strippe	d Matrix (S6)						Very Shal	low Dark Surface (TF12) plain in Remarks)
Dark St	urface (S7) (LRR R,	WLKA 149D)						Jan In Kenakay
							1	
	hydrophytic vegetatic ayer (if observed):	on and wetland	d hydrology must be	present, uni	ess distur	bed or prob	nematic.	
Type:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1.1	
·)po	1/14		-					ent? Yes /_ No
Depth (incl							Hydric Soil Pres	entr res / NO

roject/Site: Westwood Country Club - 772 North Forest	Road City/County: Amherst/Ei	rie CountySampling Date: Sampling Date:	eptember 24, 2012
pplicant/Owner: Mensch Capital Partners, LLC		Sampling Point:	12 2 12
vestigator(s): Scott Livingstone & Jody Celeste		ship, Range: <u>68.01-1-1</u>	
	TERRACE Local relief (con	ncave, convex, none): CON	(X
lope (%): 3-5 Lat: 4/2.985		1	NAD83
Tool (1) los			
	the second state of the second state of the second state of the		- 1
e climatic / hydrologic conditions on the site typical for			
e Vegetation, Soil, or Hydrologys			
e Vegetation, Soil, or Hydrology	_ naturally problematic? Yes	No X (If needed, explain any	answers in Remarks.)
JMMARY OF FINDINGS : Attach site map showing	sampling point locations, trans	sects, important features, etc.	
	u X Is the Sar	mpled Area	1.111
Hydrophytic Vegetation Present? Yes	110	Wetland? Yes	No X_
Hydric Soil Present? Yes	NO		
Wetland Hydrology Present? Yes Remarks: (Explain alternative procedures here or in a		tional Wetland Site ID:	
YDROLOGY			
		Secondary Indicate	ors (minimum of two require
Netland Hydrology Indicators: Primary Indicators (minimum of one is required; check	all that apply)	Surface Soil Cra	
the second s	Water-Stained Leaves (B9)	Drainage Pattern	
Surface Water (A1)	Aquatic Fauna (B13)	Moss Trim Lines	
High Water Table (A2)	Marl Deposits (B15)	Dry-Season W a	Caution of the second sec
Saturation (A3) Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrow	
Sediment Deposits (B2)	Oxidized Rhizospheres on Living		e on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stres	sed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled S	Soils (C6) Geomorphic Pos	sition (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitar	
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Microtopographi	
Sparsely Vegetated Concave Surface (B8)		FAC-Neutral Tes	st (D5)
Field Observations:	sthe		
Surface Water Present? Yes No	Depth (inches): N/A		
Water Table Present? Yes No	Depth (inches):		. X
Saturation Present? Yes No Y	Depth (inches):	Wetland Hydrology Present?	Yes No
(includes capillary fringe)	ell, aerial photos, previous inspec	tions), if available:	
Remarks:			

2

3.

5 6

1.1.70

3

4.

5

6.

7.

5 6

7

12.

2.

3.

4.

Woody Vine Stratum (Plot size: 30'

ort-roles-line.

620

Sampling Point: VEGETATION : Use scientific names of plants. Absolute Dominant Indicator Dominance Test worksheet: Status 30 % Cover Species? Tree Stratum (Plot size: Number of Dominant Species 1270-03 Alla 15 That Are OBL, FACW, or FAC: Total Number of Dominant 1.1. Species Across All Strata: (B) 13 100 10 N FFC Percent of Dominant Species (A/B) That Are OBL, FACW, or FAC: Prevalence Index worksheet: Total % Cover of: Multiply by: x1= 0 7 > = Total Cover OBL species x2=___ FACW species Sapling/Shrub Stratum (Plot size: 15' 10 _ x3= FAC species 10 XIMIS- PROVINGINGAL 00 x 4 = FACU species 5 CASTATUR) x5= UPL species 10 PAUMA 210 660 (B) Column Totals: (A) 3,10 Prevalence Index = B/A = Hydrophytic Vegetation Indicators: _____ č., Rapid Test for Hydrophytic Vegetation Dominance Test is >50% 31 = Total Cover Prevalence Index is < 3.01 Herb Stratum (Plot size: 5' Morphological Adaptations¹ (Provide supporting NI data in Remarks or on a separate sheet) 11000 ALM INCOME. Problematic Hydrophytic Vegetation¹ (Explain) On 3/ 10 N witz VANIA Indicators of hydric soil and wetland hydrology must ACR34011102 be present, unless disturbed or problematic. DIGIOPPIN 10 1200 Definitions of Vegetation Strata: Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. _ 8._____ Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall. 9._____ Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. 10._____ _____ 11. ______ Woody vines - All woody vines greater than 3.28 ft in

75 = Total Cover

= Total Cover

Community Type

Hydrophytic Vegetation Present?

height.

CEL

SIDE

Yes

1011

Remarks: (Include photo numbers here or on a separate sheet.)

andlende nut a vina

1 Sala

Photo #

Direction of Photo

13

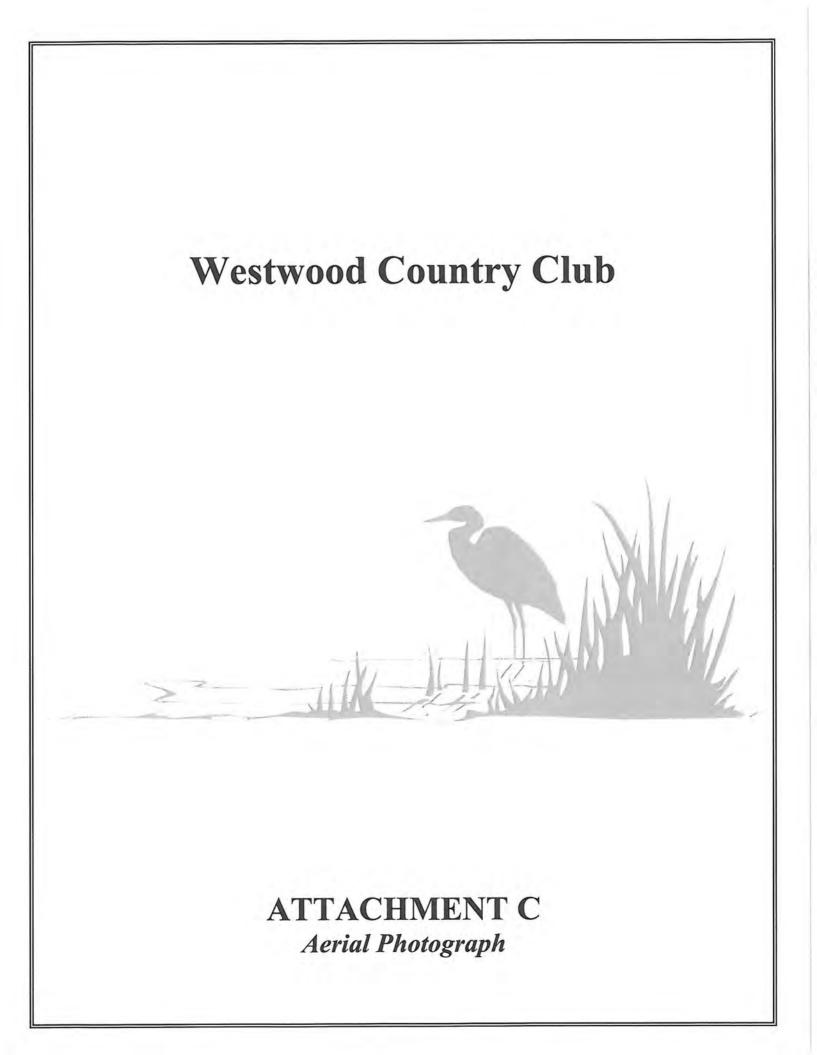
813

4013

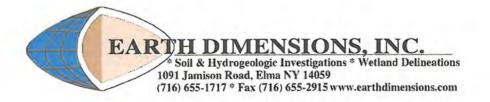
W. C. She

13 0- MIMING

nches)	And the second sec	the depth	needed to document the indicator or confirm th	e absence of i	ndicators.)
	Matrix		Redox Features	100-01	
	Color (moist)	%	Color (moist) % Type ¹ Loc ²	Texture	Remarks
	<i>ī</i>			~	
1-6	10m 4/3	100		51	
- <u>-</u> -	and Sta			1	the second se
5-12	10112 13	100_	· · ·		
	1				and a second second
ype: C=Cor	ncentration, D=Deple	etion, RM=F	Reduced Matrix, CS=Covered or Coated Sand Grain		on: PL=Pore Lining, M=Matrix.
dric Soil In	ndicators:			Indicator	rs for Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Below Surface (S8) (LRR R,	2 cm l	Muck (A10) (LRR K, L, MLRA 149B)
Histic E	pipedon (A2)		MLRA 149B) Thin Dark Surface (S9) (LRR R, MLRA 1498		Prairie Redox (A16) (LRR K, L, R) Mucky Peat or Peat (S3) (LRR K, L, R
	istic (A3) en Sulfide (A4)		Loamy Mucky Mineral (F1) (LRR K, L)	Dark	Surface (S7) (LRR K, L)
Stratifie	d Layers (A5)	- (644)	Loamy Gleyed Matrix (F2) Depleted Matrix (F3)	Polyva Thin (alue Below Surface (S8) (LRR K, L) Dark Surface (S9) (LRR K, L)
Thick Da	d Below Dark Surface ark Surface (A12)	3 (A11)	Redox Dark Surface (F6)		Aanganese Masses (F12) (LRR K, L, F
Sandy M	Mucky Mineral (S1) Piedmont Floodplain S	Soile (F19) /I	Depleted Dark Surface (F7)		
Sandy C	Gleyed Matrix (S4)		Redox Depressions (F8)	Mesic	Spodic (TA6) (MLRA 144A, 145, 149)
	Redox (S5) d Matrix (S6)			Verv S	Parent Material (TF2) Shallow Dark Surface (TF12)
Dark Su	urface (S7) (LRR R, M	ILRA 149B)	1	_ Other	(Explain in Remarks)
Indiactors of I	audrophytic vogotation	and wotlan	d hydrology must be present, unless disturbed or prob	lematic.	
	ayer (if observed):	I allu wetiali	a nyarology must be present, amess alotarised of pro-		
	NONE				
	nes): N/I		7	Hydric Soil F	Present? Yes No X
Depth (inch emarks:	nes):			A Barries A	- T

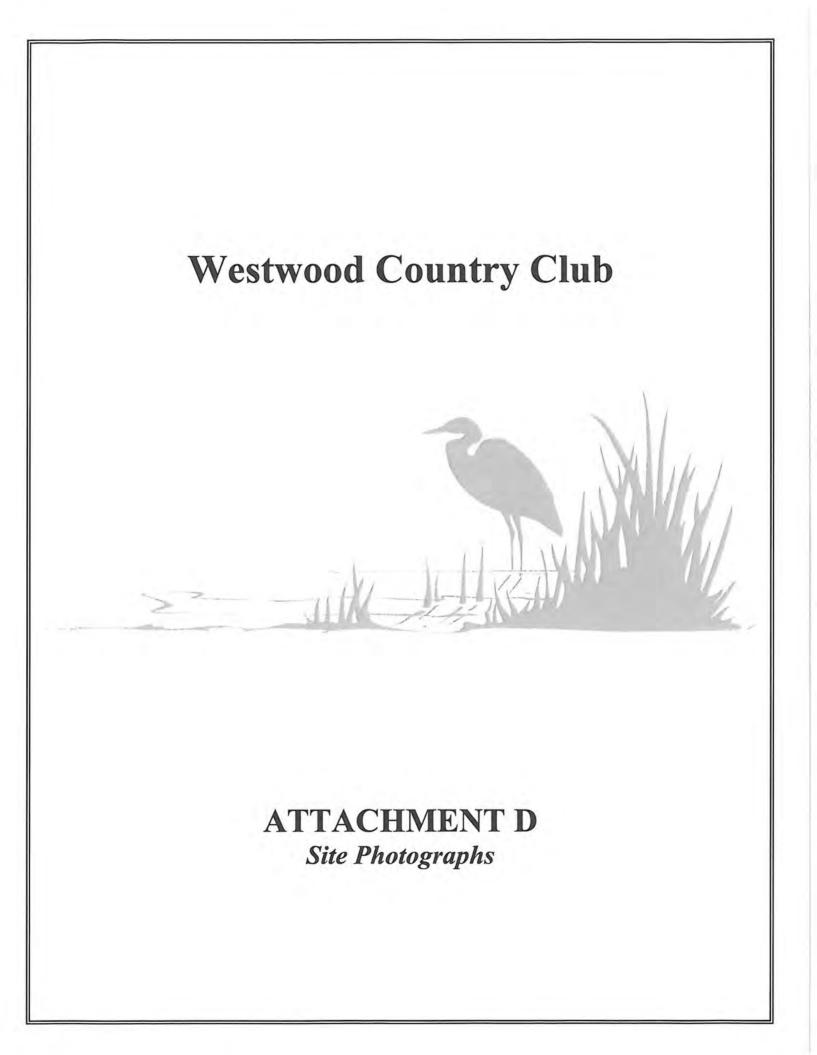

Applicant/Owner: <u>Mensch Capital</u> nvestigator(s): <u>Scott Livingstone &</u> .andform (hillslope, terrace, etc.): _ Slope (%): Lat:		and, acauty, the second	CountySampling Date: September 24, 2012
nvestigator(s): <u>Scott Livingstone &</u> andform (hillslope, terrace, etc.):		State: NY	Sampling Point:
andform (hillslope, terrace, etc.): _		Section, Township	o, Range: <u>68.01-1-1</u>
		Local relief (conca	ve, convex, none):
	42.98158	Long: - 78	. 구구 [구] Datum: NAD83
soil Map Unit Name: Cla Vera	0	1 1 2 10 Sla	
		the second s	
			(If no, explain in Remarks.)
			Are "Normal Circumstances" present? Yes X No
re Vegetation, Soil	_, or Hydrology natura	ally problematic? Yes N	o <u>X</u> (If needed, explain any answers in Remarks.)
UMMARY OF FINDINGS : Attac	ch site map showing sampl	ing point locations, transec	ts, important features, etc.
		sthe Sampl	led Area
Hydrophytic Vegetation Present?	Yes No Yes No	within a We	
Hydric Soil Present?	Yes No	Y If yes option	al Wetland Site ID:
Wetland Hydrology Present? Remarks: (Explain alternative pro			
YDROLOGY			
Wetland Hydrology Indicators			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of c		apply)	Surface Soil Cracks (B6)
Surface Water (A1)		Stained Leaves (B9)	Drainage Patterns (B10)
High Water Table (A2)		c Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3)	Marl D	eposits (B15)	Dry-Season W ater Table (C2)
Water Marks (B1)		en Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)		ed Rhizospheres on Living R	
Drift Deposits (B3)		nce of Reduced Iron (C4)	Stunted or Stressed Plants (D1) (C6) Geomorphic Position (D2)
Algal Mat or Crust (B4)		t Iron Reduction in Tilled Soils	Shallow Aquitard (D3)
Iron Deposits (B5) Inundation Visible on Aerial	Contraction of the second s	luck Surface (C7) (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concar		(Explain in riomano)	FAC-Neutral Test (D5)
Field Observations:			
	Yes No K Depth	(inches): N/A	
Water Table Present?	Yes No Depth	(inches): <u>NTA</u>	V.
Saturation Present?	Yes No X Depth	(inches):	Wetland Hydrology Present? Yes No
(includes capillary fringe) Describe Recorded Data (stream	n cauce monitoring well aeri	al photos, previous inspection	ns), if available:
	i gauge, monitoring weil, ach	al protoc, providuo inspectio	
Remarks:			

Sampling Point:


GETATION : Use scientific names of plants.		
	Absolute Dominant Indicator	Dominance Test worksheet:
ree <u>Stratum</u> (Plot size: <u>30'</u>) + 1 1 C A Stat Cos	<u>% Cover Species?</u> <u>Status</u> MI	Number of Dominant Species (A)
Tudans nort	FALU	
Aceronica	TY FACI	Total Number of Dominant Species Across All Strata:
FRANS ANNIAVANIA	N FAIN	
provide participation		Percent of Dominant Species 2 0 (A/E
		Prevalence Index worksheet:
		Total % Cover of:Multiply by:
	ー ゴフ = Total Cover	OBL species x 1 =
apling/Shrub Stratum (Plot size:15')	04	FACW species $5 \times 2 = 0$
Rhamnes same	35 Y FAW	FAC species x 3 =
Rubus 1 Allans	10 1 FAC.	FACU species 127 x 4 = 468
	the second second second	UPL species U x 5 = 0
		Column Totals: <u>147</u> (A) <u>553</u> (B
		Prevalence Index = B/A =
		Hydrophytic Vegetation Indicators:
		Rapid Test for Hydrophytic Vegetation
	45 = Total Cover	Dominance Test is >50%
		Prevalence Index is < 3.01
Plot size: <u>5'</u>)	2- N FAW	Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
Killanin Santa	- DE IN FALU	
IST. AND SO	- 20 Y FALV	
VRTICA DILA		Indicators of hydric soil and wetland hydrology must
Salidano Communication	15 Y FREV	be present, unless disturbed or problematic.
Vir Cirka Int	10 Y FAW	Definitions of Vegetation Strata:
Kenes Cruph	S N N	Tree - Woody plants 3 in. (7.6 cm) or more in diameter
Harry MANDUNE		at breast height (DBH), regardless of height.
Leonurus Cardieca	10 Y NI	Sapling/shrub - Woody plants less than 3 in. DBH
SolAnon d'anna	S N FAC-	and greater than 3.28 ft (1 m) tall.
VALL VALCALA	3 N FACU	Herb - All herbaceous (non-woody) plants, regardles
DIRIALITY BORING IS	& N NI	of size, and woody plants less than 3.28 ft tall.
		Woody vines - All woody vines greater than 3.28 ft in
7	= Total Cover	height.
oody Vine Stratum (Plot size: <u>30'</u>)	15 Y FOR	Suc shash
VITIL REAL ELA		Community Type:
		Community Type.
		Hydrophytic Vegetation
		Present? Yes No
	= Total Cover	
emarks: (Include photo numbers here or on a separate		
Photo # Direc	tion of Photo	
Mill I lat h		
DIStuber		
DISTUBLE		

Project Code: W1109b

Depth Matrix Redox Features Inches) Color (moist) % Type Loc ² Texture Remarks Q - 77 IOYAL/IS IA0 IA IA IA Q - 172 IOYAL/IS IA0 IA IA IA Q - 172 IOYAL/IS IA0 IA IA IA Image: Inchest in the inchest inche	Depth	n: (Describe to	the depth neede	d to document the indicato	or or confirm the	e absence of indic	cators.)
Inches) Color (moist) % Color (moist) % Type Loc ² Texture Remarks Q - 7 1044/13 160 1		- (MC) (CM) - 100 - 100					
T-12 Iorrel 10 T-12 Polyvalue Below Iorrel 10 T-12 Iorrel 10 T-12 Iorrel 10 T-12 Iore-Matric (F3) Depleted			% Col		pe ¹ Loc ²	Texture	Remarks
T-12 Iorrel 10 T-12 Polyvalue Below Iorrel 10 T-12 Iorrel 10 T-12 Iorrel 10 T-12 Iore-Matric (F3) Depleted		1.1					
T-12 Iorrel 10 T-12 Polyvalue Below Iorrel 10 T-12 Iorrel 10 T-12 Iorrel 10 T-12 Iore-Matric (F3) Depleted	0 7	m a 4/2	110			0	
Fype: C=Concentration. D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. ydric Soil Indicators: Indicators for Problematic Hydric Soils ² : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) Black Histic (A3) MILRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Thick Dark Surface (A12) Redox Dark Surface (F6) Sandy Redox (S3) Endox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Sandy Redox (S5) Redox Depressions (F8) Sandy Redox (S5) Other (Explain in Remarks) Indicators of hydrophybic vegetation and wetland hydrology must be present, unless disturbed or problematic. cestrictive Layer (if observed): Type: Type: MonX ² Depth (Inches): M/A	0-1_1	04412	100		· ·	<u></u>	
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LRR K, L, Depleted Matrix (S4) Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (TF12) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic Soil Present? Yes No MLRA 149B) Very Shallow Dark Surface (TF12) Depth (inches): M/A Hydric Soil Present? Yes No	7-12 16	me=16	100			l	
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LRR K, L, Depleted Matrix (S4) Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (TF12) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic Soil Present? Yes No MLRA 149B) Very Shallow Dark Surface (TF12) Depth (inches): M/A Hydric Soil Present? Yes No							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Depleted Matrix (F3) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LRR K, L, Mesic Spodic (TA6) (MLRA 144A, 145, 14 Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (F7) Very Shallow Dark Surface (F7) Dark Surface (S7) (LRR R, MLRA 149B) Coast Spodic (TA6) (MLRA 144A, 145, 14 Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. estrictive Layer (If observed): MONE Type: MONE <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Polyvalue Below Surface (S6) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LRR K, L) Sandy Gleyed Matrix (S4) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (F71) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes No Depth (inches): M/A Hydric Soil Present? Yes						\	
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Depleted Matrix (F3) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LRR K, L, Mesic Spodic (TA6) (MLRA 144A, 145, 14 Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (F7) Very Shallow Dark Surface (F7) Dark Surface (S7) (LRR R, MLRA 149B) Coast Spodic (TA6) (MLRA 144A, 145, 14 Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. estrictive Layer (If observed): MONE Type: MONE <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Polyvalue Below Surface (S6) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LRR K, L) Sandy Gleyed Matrix (S4) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (F71) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes No Depth (inches): M/A Hydric Soil Present? Yes							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Depleted Matrix (F3) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LRR K, L, Mesic Spodic (TA6) (MLRA 144A, 145, 14 Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (F7) Very Shallow Dark Surface (F7) Dark Surface (S7) (LRR R, MLRA 149B) Coast Spodic (TA6) (MLRA 144A, 145, 14 Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. estrictive Layer (If observed): MONE Type: MONE <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Polyvalue Below Surface (S6) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LRR K, L) Sandy Gleyed Matrix (S4) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (F71) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes No Depth (inches): M/A Hydric Soil Present? Yes							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LRR K, L, Depleted Matrix (S4) Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (TF12) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic Soil Present? Yes No MLRA 149B) Very Shallow Dark Surface (TF12) Depth (inches): M/A Hydric Soil Present? Yes No							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LRR K, L, Depleted Matrix (S4) Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (TF12) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic Soil Present? Yes No MLRA 149B) Very Shallow Dark Surface (TF12) Depth (inches): M/A Hydric Soil Present? Yes No							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LRR K, L, Depleted Matrix (S4) Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (TF12) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic Soil Present? Yes No MLRA 149B) Very Shallow Dark Surface (TF12) Depth (inches): M/A Hydric Soil Present? Yes No							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LRR K, L, Depleted Matrix (S4) Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (TF12) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic Soil Present? Yes No MLRA 149B) Very Shallow Dark Surface (TF12) Depth (inches): M/A Hydric Soil Present? Yes No							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Polyvalue Below Surface (S6) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LRR K, L) Sandy Gleyed Matrix (S4) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (F71) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes No Depth (inches): M/A Hydric Soil Present? Yes							
ydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L) Thick Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Iron-Manganese Masses (F12) (LRR K, L, Depleted Matrix (S4) Sandy Redox (S5) Redox Depressions (F8) -*Mesic Spodic (TA6) (MLRA 144A, 145, 14 Stripped Matrix (S6) Very Shallow Dark Surface (S7) (LRR R, MLRA 149B) Very Shallow Dark Surface (TF12) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic Soil Present? Yes No MLRA 149B) Very Shallow Dark Surface (TF12) Depth (inches): M/A Hydric Soil Present? Yes No						21 agetters	DI -Dara Lining M-Matrix
			tion, RM=Reduce	a Matrix, CS=Covered or Co	bated Sand Grain		
Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Polyvalue Below Surface (S9) (LRR K, L) Statified Layers (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Gleyed Matrix (S4) Redox Depressions (F8) -Mesic Spodic (TA6) (MLRA 144A, 145, 14 Sandy Redox (S5) Redox Depressions (F8) -Mesic Spodic (TA6) (MLRA 144A, 145, 14 Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes No Type: MDME Hydric Soil Present? Yes No	lydne Son malea	ators.				marcatore re	
Black Histic (A3)					58) (LRR R,		
Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LRR K, L) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) - Piedmont Floodplain Soils (F19) (MLRA 149B) Redox Depressions (F8) - Sandy Redox (S5) Redox Depressions (F8) - Stripped Matrix (S6) Polyvalue Below Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes No Depth (inches): N/A Hydric Soil Present? Yes No					R R. MLRA 149E		irie Redox (A16) (LRR K, L, R) kv Peat or Peat (S3) (LRR K, L,
Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LRR K, L, Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) -Mesic Spodic (TA6) (MLRA 1449B) Sandy Gleyed Matrix (S4) Redox Depressions (F8) -Mesic Spodic (TA6) (MLRA 144A, 145, 14 Sandy Redox (S5) Stripped Matrix (S6) -Mesic Spodic (TA6) (MLRA 144B) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. testrictive Layer (if observed): Type: Type: MONE Depth (inches): M/A	Hydrogen Su	ulfide (A4)		Loamy Mucky Mineral (F1)	(LRR K, L)	Dark Surfa	ace (S7) (LRR K, L)
Thick Dark Surface (A12) Redox Dark Surface (F6) Iron-Manganese Masses (F12) (LRR K, L, Depleted Dark Surface (F7)	Stratified Lay	vers (A5)					
Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Piedmont Floodplain Soils (F19) (MLRA 149B) Redox Depressions (F8)Mesic Spodic (TA6) (MLRA 144A, 145, 14 Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Other (Explain in Remarks) Other (Explain in Remarks) Depth (inches): M_A Hydric Soil Present? Yes No			(ATU)	Redox Dark Surface (F6)			
Sandy Gleyed Matrix (S4) Redox Depressions (F8)^Mesic Spodic (TA6) (MLRA 144A, 145, 14 Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Very Shallow Dark Surface (TF12) Other (Explain in Remarks)	Sandy Mucky	v Mineral (S1)		Depleted Dark Surface (F7))		
Sandy Redox (S5) Stripped Matrix (S6) Dark Surface (S7) (LRR R, MLRA 149B) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. testrictive Layer (if observed): Type:			DIIS (F19) (WILKA	Redox Depressions (F8)		Mesic Spo	odic (TA6) (MLRA 144A, 145, 1
Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Indicators of hydrophytic vegetation and wetland hydrology must be present. Indicators of hydrophytic vegetation and wetland hydrology must be present. Indicators of hydrophytic vegetation and wetland hydrology must be present. Indicators of hydrophytic vegetation and wetland hydrology must be present. Indicators of	Sandy Redox	x (S5)	_			Red Parer	nt Material (TF2)
Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.	Stripped Mat Dark Surface	rix (S6) (S7) (LRR R. MI	RA 149B)			Other (Exp	plain in Remarks)
Image: Section of the sectio	_ buin ounded					-	
Image: Section of the sectio							
Type:			and wetland hydro	logy must be present, unless	disturbed or proble	ematic.	
Depth (inches): N/A Hydric Soil Present? Yes No X	Indicators of hydro	phytic vegetation				1.	
	lestrictive Layer	(if observed):					
	Restrictive Layer	(if observed):					
	Type:	(if observed):				Hydric Soil Pres	ent? Yes No2
	Type:	(if observed):			_	Hydric Soil Prese	ent? Yes <u>No </u> No <u></u>
	estrictive Layer (Type:) Depth (inches):	(if observed):				Hydric Soil Prese	ent? Yes <u>No 2</u>
	estrictive Layer (Type:) Depth (inches):	(if observed):				Hydric Soil Prese	ent? Yes <u>No 2</u>
	Type:	(if observed):				Hydric Soil Prese	ent? Yes <u>No </u>
	Type:	(if observed):				Hydric Soil Prese	ent? Yes <u>No </u>
	Type:	(if observed):				Hydric Soil Prese	ent? Yes <u>No 2</u>
	Type:	(if observed):				Hydric Soil Pres	ent? Yes <u>No 2</u>
	Type:	(if observed):				Hydric Soil Pres	ent? Yes <u>No 2</u>
	testrictive Layer (Type:)	(if observed):				Hydric Soil Pres	ent? Yes <u>No 2</u>
	Type:	(if observed):				Hydric Soil Pres	ent? Yes <u>No 2</u>
	testrictive Layer (Type:)	(if observed):				Hydric Soil Pres	ent? Yes <u>No 2</u>
	Type:	(if observed):				Hydric Soil Pres	ent? Yes <u>No 2</u>
	Type:	(if observed):				Hydric Soil Pres	ent? Yes <u>No 2</u>
	testrictive Layer (Type:)	(if observed):				Hydric Soil Pres	ent? Yes <u>No 2</u>
	Type:	(if observed):				Hydric Soil Press	ent? Yes <u>No 2</u>



Attachment C: Aerial Photograph <u>http://gisl.erie.gov/GC/ErieCountyNY/default.htm</u> Site visited 9/11/2012

Westwood Country Club Town of Amherst, Erie County, New York

Westwood Country Club

W1I09b

<u>Photo 1</u>: Facing east. Depicts the northern portion of the investigation area.

Photo 3: Facing south. Depicts the young hardwood swamp of wetland W1 and data point D1.

Photo 5: Facing north. Depicts the old field community south of wetland W2.

<u>Photo 2</u>: Facing south. Depicts the western portion of the investigation area.

Photo 4: Facing southwest. Depicts the old field community of data point D2.

Photo 6: Facing north. Depicts the scrub-shrub swamp community of wetland W2.

EARTH DIMENSIONS, INC.

W1I09b

Westwood Country Club

Photo 7: Facing northwest. Depicts open water cattail pond of wetland W3.

<u>Photo 9:</u> Facing northeast. Depicts a cart path between two mowed lawn communities.

Photo 11: Facing south. Depicts the mowed lawn community south of wetland W4.

Photo 8: Facing south. Depicts the mowed lawn from the adjacent old field community.

Photo 10: Facing north. Depicts the open water community of wetland W4.

Photo 12: Facing north. Depicts the hardwood swamp community of wetland W5 and data point D4.

EARTH DIMENSIONS, INC.

W1I09b

Westwood Country Club

Photo 13: Facing north. Depicts the successional northern hardwood community of data point D5.

Photo 15: Facing east. Depicts the mowed lawn community east of wetland W5.

Photo 17: Facing east. Depicts wetland W7.

Photo 14: Facing southwest. Depicts the open water community of Wetland W6.

<u>**Photo 16:</u>** Facing northwest. Depicts the mowed lawn community from the old field community.</u>

<u>Photo 18:</u> Facing west. Depicts the mowed lawn community from wetland W8.

EARTH DIMENSIONS, INC.

W1I09b

Photo 19: Facing west. Depicts the southern portion of the investigation area.

Photo 21: Facing northwest. Depicts the open water community of wetland W9.

Photo 23: Facing north. Depicts the bridge crossing the ditch at the south side of the investigation area.

<u>Photo 20:</u> Facing north. Depicts the eastern portion of the investigation area.

Photo 22: Facing west. Depicts the east end of an ditch on south side of investigation area.

Photo 24: Facing south. Depicts the bridge crossing the ditch at the south side of the investigation area.

EARTH DIMENSIONS, INC.

W1109b

Westwood Country Club

Photo 25: Facing west. Depicts the culvert on the east side of the ditch.

Photo 27: Facing south. Depicts the old field community Between two mowed lawn communities.

Photo 29: Facing south. Depicts the hardwood swamp community of wetland W10 and data point D7.

Photo 26: Facing east. Depicts the second bridge at the south east side of investigation area

Photo 28: Facing southeast. Depicts the old field community of data point D6.

Photo 30: Facing south. Depicts Ellicott Creek.

EARTH DIMENSIONS, INC. -

W1I09b

Westwood Country Club

<u>Photo 31:</u> Facing north. Depicts the successional northern hardwoods of data point D10.

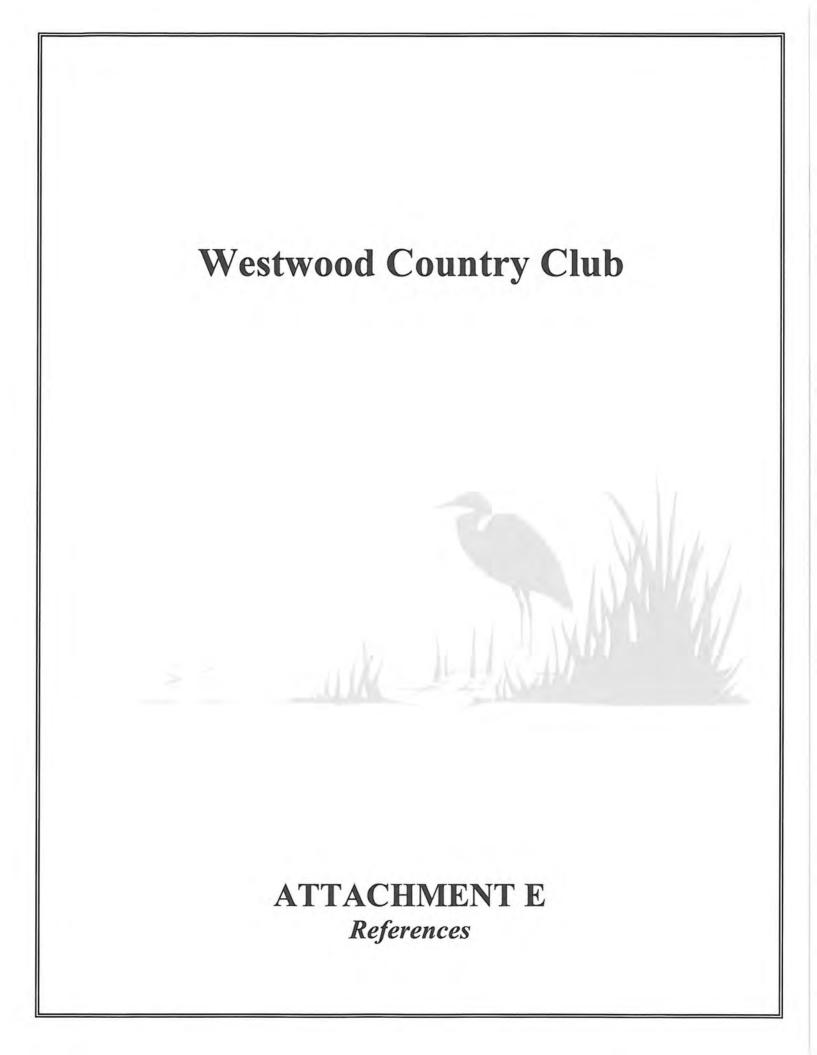
Photo 33: Facing west. Depicts the Ellicott Creek oxbow surrounding golf green.

Photo 35: Facing west. Depicts the area to the east data point D11.

Photo 32: Facing south. Depicts a small swale to the east of Ellicott Creek.

Photo 34: Facing northeast. Depicts the area to the east of data point D11.

Photo 36: Facing southwest. Depicts the area to the east of D11.



W1109b

Photo 37: Facing southeast. Depicts the area to the southeast of data point D11.

INFORMATIONAL REFERENCES USED BY EARTH DIMENSIONS INC.

- Andrus, R.E. 1980. Sphagnaceae (Peat Moss Family) of New York State. Contributions to a Flora of New York State III, R.S. Mitchell (Ed.), Bulletin No. 442, New York State Museum, Albany, New York. 89 pp.
- Benyus, J.M. 1989. The Field Guide to Wildlife Habitats of the Eastern United States. Fireside, Simon & Shuster, Inc., New York. 335 pp.
- Britton, N.L., and H.A. Brown. 1970. An Illustrated Flora of the Northern United States and Canada, Volumes 1, 2, and 3. Dover Publications, Inc., New York. 2052 pp.
- Brockman, C.F., R. Merrilees, and H.S. Zim. 1968. Trees of North America: A Field Guide to the Major Native and Introduced Species North of Mexico. Western Publishing, Inc. New York, New York. 280 pp.
- Brown, L. 1979. Grasses: An Identification Guide. Peterson Nature Library. Houghton Mifflin Co., Boston. 240 pp.
- Cobb, B. 1963. A Field Guide to the Ferns and Related Families. Houghton Mifflin Co., Boston. 281 pp.
- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. Laroe. 1979. Classification of Wetlands and Deep Water Habitats of the United States. U.S. Fish and Wildlife Service, Washington, D.C. FWS/OBS-79-31. 103 pp.
- Eggers, S.D., and D.M. Reed. 1997. Wetland Plants and Plant Communities of Minnesota and Wisconsin. Second Edition. U.S. Army Corps of Engineers, St. Paul District, Minnesota. 263 pp.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mass. 100 pp. plus appendices.
- Hotchkiss, N. 1970. Common Marsh Plants of the United States and Canada. U.S. Department of the Interior, Bureau of Sport Fisheries and Wildlife, Washington, D.C., Resource Publication 93.
- Hurley, L.M. 1990. Field Guide to the Submerged Aquatic Vegetation of Chesapeake Bay. U.S. Fish and Wildlife Service, Chesapeake Bay Estuary Program, Annapolis, Maryland. 51 pp.
- Knobel, E. 1977. Field Guide to the Grasses, Sedges, and Rushes of the United States. Dover publications, Inc., New York. 83 pp.
- Little, E.L. 1980. The Audubon Society Field Guide to North American Trees (Eastern Region). Alfred A. Knopf, New York. 714 pp.
- Magee, D.W. 1981. Freshwater Wetlands. University of Massachusetts Press, Amherst. 245 pp.
- Mitchell, R.S., and G.C. Tucker. 1997. Revised Checklist of New York State Plants. Contributions to a Flora of New York State IV, R.S. Mitchell (Ed.). Bulletin No. 490, New York State Museum, Albany, New York. 400 pp.

Munsell Color Chart. (Munsell Color 1975).

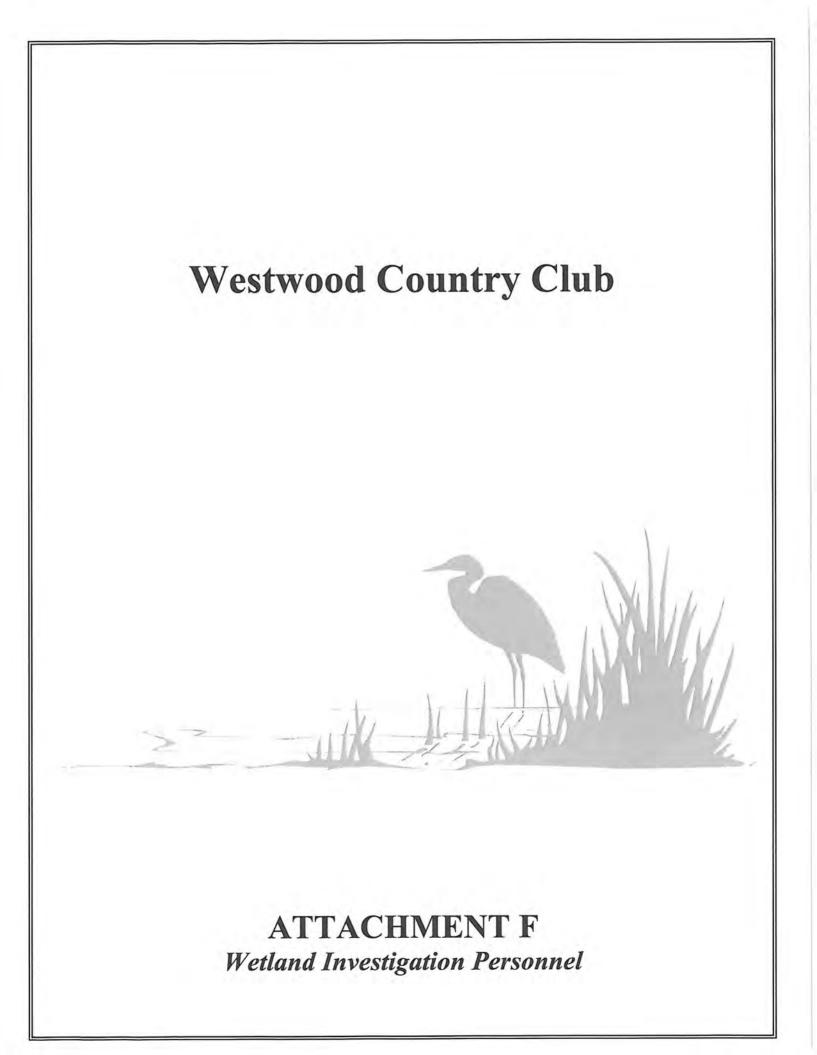
- National Wetland Inventory Maps. U.S. Department of the Interior, Fish and Wildlife Service, National Wetland Inventory, St. Petersburg, Florida. http://wetlandsfws.er.usgs.gov date visited: 2/4/2010
- Niering, W.C., and N.C. Olmstead. 1979. The Audubon Society Field Guide to North American Wildflowers (Eastern Region). Alfred A. Knopf, New York. 887 pp.
- New York State Code of Rules and Regulations (NYCRR). 1989. Protected Native Plants. NYCRR Part 193.3, June, 1989. New York State Department of Environmental Conservation.
- New York Natural Heritage Program. 2002. New York Rare Plant Status List, February, 1989. S.M. Young, (Ed.), New York State Department of Environmental Conservation and The Nature Conservancy publication. 26 pp.
- New York State Department of Environmental Conservation Freshwater Wetlands Maps, NYSDEC Environmental Resource Mapper, <u>http://www.dec.ny.gov/imsmaps/ERM/viewer.htm</u>
- Newcomb, L. 1977. Newcomb's Wildflower Guide. Little, Brown and Co., Boston. 490 pp.
- Ogden, E.C. 1981. Field Guide to Northeastern Ferns. Contributions to a Flora of New York State III, R.S. Mitchell (Ed.), Bulletin No. 444, New York State Museum, Albany, New York. 122 pp.
- Peattie, D.C. 1991. A Natural History of Trees of Eastern and North America. Houghton Mifflin Co., Boston. 606 pp.
- Peterson, RT., and M. McKenny. 1968. A Field Guide to Wildflowers of Northeastern and Northcentral North America. Houghton Mifflin Co., Boston. 420 pp.
- Petrides, G.A. 1972. A Field Guide to Trees and Shrubs. Houghton Mifflin Co., Boston. 428 pp.
- Prescott, G.W. 1969. How to Know the Aquatic Plants. Second Edition. William C. Brown Co., Dubuque, Iowa. 171 pp.
- Raynal, D.J., and D. J. Leopold. 1999. Landowner's Guide to State-Protected Plants of Forests in New York State. New York Center for Forestry Research and Development, SUNY-ESF, Syracuse, New York. 92pp.
- Reed, Porter B. Jr. 1988. National List of Plant Species that Occur in Wetlands: Northeast (Region 1). U.S. Fish and Wildlife Service, Washington, D.C. Biol. Rept. 88 (26.1). 112 pp.
- Reschke, C. 2002. Ecological Communities of New York State. New York Natural Heritage Program. NYSDEC, Latham, N.Y. (2nd Ed.) 136 pp.
- Soil Conservation Service. 1975. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. U.S.D.A., Soil Conservation Service, U.S. Handbook 436.
- Soil Conservation Service. 1988. New York Hydric Soils and Soils with Hydric Inclusions, revised July, 1988, Soil Conservation Service, Syracuse, New York, Technical Guide, Section II. 23 pp.

Simonds,R.L., and H.H. Tweedie. 1978. Wildflowers of the Great Lakes Region. Chicago Review Press, Chicago. 96 pp.

Symonds, G.W.D. 1958. The Tree Identification Book. Quill, New York. 272 pp.

Symonds, G.W.D. 1963. The Shrub Identification Book. William Morrow & Co., New York. 379 pp.

Tiner, R. W. Jr. 1988. A Field Guide to Nontidal Wetland Identification. Maryland Department of Natural Resources and U.S. Fish and Wildlife Service Cooperative Publication. Maryland Department of Natural Resources, Annapolis, Maryland. 283 pp. + 198 color plates.


United States Department and Agriculture & the Natural Resources Conservation Service (USDA, NRCS). Soil Conservation Service Soil Survey of Erie County, New York. U.S.D.A., Soil

Conservation Service. http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

USDA, NRCS. 2009. The PLANTS Database (<u>http://plants.usda.gov</u>, 12/14/09). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

United States Geological Survey maps, Denver, Colorado. Buffalo SE Quadrangle/2002DeLorme.

- U.S. Army Corps of Engineers. 2009. Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region, ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-09-19. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- U.S. Fish and Wildlife Service, A Wetlands and Deepwater Habitats Classification. May 3, 2002, http://www.nwi.fws.gov/. June 16, 2002.
- Zander, R.H., and G.J. Pierce. 1979. Flora of the Niagara Frontier Region. Bulletin of the Buffalo Society of Natural Sciences, Vol. 16 (Suppl. 2), Buffalo, New York. 110 pp.

WETLAND INVESTIGATION PERSONNEL

Soils and Hydrology Sampling Scott Livingstone, Senior Soil Scientist Earth Dimensions, Inc. 1091 Jamison Road Elma, New York 14059 (716) 655-1717

Vegetation Sampling Jody Celeste, Ecologist Earth Dimensions, Inc. 1091 Jamison Road Elma, New York 14059 (716) 655-1717

Report Preparation Andy Steiner, Ecologist Earth Dimensions, Inc. 1091 Jamison Road Elma, New York 14059 (716) 655-1717

DEPARTMENT OF THE ARMY

BUFFALO DISTRICT, CORPS OF ENGINEERS 1776 NIAGARA STREET BUFFALO, NEW YORK 14207-3199

April 22, 2013

Regulatory Branch

SUBJECT: Acceptance of Wetland Delineation, Application No. 1990-97632

Andrew J. Shaevel Mencsh Capital Partners, LLC 350 Essjay Road Williamsville, NY 14221

Dear Mr. Shaevel:

This pertains to your request for an approved jurisdictional determination for the 170 +/acre Westwood Country Club site located at 772 North Forest Road in the Town of Amherst, Erie County, New York.

Section 404 of the Clean Water Act establishes Corps of Engineers jurisdiction over the discharge of dredged or fill material into waters of the United States, including wetlands, as defined in 33 CFR Part 328.3.

I am hereby verifying the Federal wetland boundary as shown on the attached wetland delineation map dated September 25, 2012. This verification was confirmed on November 8, 2012 and will remain valid for a period of five (5) years from the date of this correspondence unless new information warrants revision of the delineation before the expiration. At the end of this period, a new wetland delineation will be required if a project has not been completed on this property and additional impacts are proposed for waters of the United States. Further, this delineation/determination has been conducted to identify the limits of the Corps Clean Water Act jurisdiction for the particular site identified in this request. This delineation/determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985, as amended. If you or your tenant are United States Department of Agriculture (USDA) program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resource Conservation Service prior to starting work.

Based upon my review of the submitted delineation and on-site observations, I have determined that Wetland 11 (Ellicott Creek) on the subject parcel is part of a surface water tributary system to a navigable water of the United States as noted on the attached Jurisdictional Determination (JD) form. Therefore, the wetland(s) is/are regulated under Section 404 of the Clean Water Act. Department of the Army authorization is required if you propose a discharge of dredged or fill material in this/these area(s). **Regulatory Branch** SUBJECT: Department of the Army Application No. 1990-97632

In addition, I have determined that there is no clear surface water connection or ecological continuum between Wetland 1 through 10 on the parcel and a surface tributary system to a navigable water of the United States. Therefore, these waters are considered isolated, nonnavigable, intrastate waters and not regulated under Section 404 of the Clean Water Act. Accordingly, you do not need Department of the Army authorization to commence work in these areas.

I encourage you to contact the appropriate state and local governmental officials to ensure that the proposed work complies with their requirements.

Finally, this letter contains an approved JD for the subject parcel. If you object to this JD, you may request an administrative appeal under Corps regulations at 33 CFR Part 331. Enclosed you will find a Notification of Appeal Process (NAP) fact sheet and Request for Appeal (RFA) form. If you request to appeal the above JD, you must submit a completed RFA form within 60 days of the date on this letter to the Great Lakes/Ohio River Division Office at the following address:

Attn: Appeal Review Officer Great Lakes and Ohio River Division CELRD-PDS-O 550 Main Street, Room 10524 Cincinnati, OH 45202-3222 Phone: 513-684-6212; FAX 513-684-2460

In order for an RFA to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal under 33 C.F.R. part 331.5, and that it has been received by the Division Office within 60 days of the date of the NAP. Should you decide to submit an RFA form, it must be received at the above address by June 20, 2013.

It is not necessary to submit an RFA to the Division office if you do not object to the determination in this letter.

A copy of this letter has been sent to Scott J. Livingstone at Earth Dimensions, Inc.

Questions pertaining to this matter should be directed to me by calling 716-879-4342, by writing to the following address: U.S. Army Corps of Engineers, 1776 Niagara Street, Buffalo, New York 14207, or by e-mail at: Mark.L.Lester@usace.army.mil

Sincerely,

Mark 1. Lester

Mark L. Lester Biologist

Enclosures

NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL

Applica	ant: Mensch Capital Management, LLC	File Number: 1990-97632	Date: 4/22/2013
Attache	See Section below		
	INITIAL PROFFERED PERMIT (Standard Permit		А
	PROFFERED PERMIT (Standard Permit or Letter	of permission)	В
	PERMIT DENIAL		С
Х	APPROVED JURISDICTIONAL DETERMINAT	ION	D
	PRELIMINARY JURISDICTIONAL DETERMIN	E	
nform A: IN	ION I - The following identifies your rights and optic ation may be found at http://www.usace.army.mil/CE ITIAL PROFFERED PERMIT: You may accept o	CW/Pages/reg_materials.aspx or Corps reg r object to the permit.	gulations at 33 CFR Part 331
aut sig to : OBJ per obj	CEPT: If you received a Standard Permit, you may sight chorization. If you received a Letter of Permission (Lunature on the Standard Permit or acceptance of the Lunature on the Standard Permit or acceptance of the Lunature appeal the permit, including its terms and conditions, ECT: If you object to the permit (Standard or LOP) mit be modified accordingly. You must complete Secure fections must be received by the district engineer with	OP), you may accept the LOP and your wo DP means that you accept the permit in its and approved jurisdictional determinations because of certain terms and conditions the ction II of this form and return the form to in 60 days of the date of this notice, or you	rk is authorized. Your entirety, and waive all rights associated with the permit. erein, you may request that the the district engineer. Your will forfeit your right to
mo the dis	beal the permit in the future. Upon receipt of your let dify the permit to address all of your concerns, (b) me permit having determined that the permit should be in trict engineer will send you a proffered permit for you OFFERED PERMIT: You may accept or appeal the	odify the permit to address some of your of ssued as previously written. After evaluat ar reconsideration, as indicated in Section I	bjections, or (c) not modifying your objections, the
aut sig	EPT: If you received a Standard Permit, you may si horization. If you received a Letter of Permission (Lenature on the Standard Permit or acceptance of the Lenature appeal the permit, including its terms and conditions,	OP), you may accept the LOP and your wo OP means that you accept the permit in its	rk is authorized. Your entirety, and waive all rights
ma for dat	EAL: If you choose to decline the proffered permit (y appeal the declined permit under the Corps of Engi m and sending the form to the division engineer. Thi e of this notice.	neers Administrative Appeal Process by co s form must be received by the division en	mpleting Section II of this gineer within 60 days of the
comple	RMIT DENIAL: You may appeal the denial of a peting Section II of this form and sending the form to the within 60 days of the date of this notice.	ne division engineer. This form must be re	ceived by the division
nform			
of	EPT: You do not need to notify the Corps to accept this notice, means that you accept the approved JD in	its entirety, and waive all rights to appeal	the approved JD.
Ap by	EAL: If you disagree with the approved JD, you may peal Process by completing Section II of this form an the division engineer within 60 days of the date of thi	d sending the form to the division engineer is notice.	This form must be receive
E: PR prelimi contact	ELIMINARY JURISDICTIONAL DETERMINA inary JD. The Preliminary JD is not appealable. If yc ing the Corps district for further instruction. Also yo iate the JD.	TION: You do not need to respond to the ou wish, you may request an approved JD (which may be appealed), by

SECTION II - REQUEST FOR APPEAL or OBJECTIONS TO AN INITIAL PROFFERED PERMIT

REASONS FOR APPEAL OR OBJECTIONS: (Describe your reasons for appealing the decision or your objections to an initial proffered permit in clear concise statements. You may attach additional information to this form to clarify where your reasons or objections are addressed in the administrative record.)

ADDITIONAL INFORMATION: The appeal is limited to a review of the administrative record, the Corps memorandum for the record of the appeal conference or meeting, and any supplemental information that the review officer has determined is needed to clarify the administrative record. Neither the appellant nor the Corps may add new information or analyses to the record. However, you may provide additional information to clarify the location of information that is already in the administrative record.

POIN	T	OF	CONTA	I T I	FOR	QI	UES	ГЮ	NS	OR	INF	ORMAT	ION:
													1

If you have questions regarding this decision and/or the appeal	If you only have questions regarding the appeal process you may
process you may contact:	also contact:
Mark L. Lester	Attn: Appeal Review Officer
United States Army Corps of Engineers	Great Lakes and Ohio River Division
Buffalo District	CELRD-PD-REG
1776 Niagara Street	550 Main Street, Room 10524
Buffalo, NY 14207	Cincinnati, OH 45202-3222
716-879-4342	513-684-6212; FAX 513-684-2460
Mark.L.Lester@usace.army.mil	

RIGHT OF ENTRY: Your signature below grants the right of entry to Corps of Engineers personnel, and any government consultants, to conduct investigations of the project site during the course of the appeal process. You will be provided a 15 day notice of any site investigation, and will have the opportunity to participate in all site investigations.

	Date:	Telephone number:
Signature of appellant or agent.		

APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 3/26/13

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Buffalo District, Westwood Country Club, LRB-1990-97632, Form 1 of 1 (Wetland 1 through 11)

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: New York County/parish/borough: Erie County City: Town of Amherst Center coordinates of site (lat/long in degree decimal format): Lat. 42.99055° N, Long. -78.77460° W. Universal Transverse Mercator:

Name of nearest waterbody: Ellicott Creek

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Ellicott Creek Name of watershed or Hydrologic Unit Code (HUC): 04120104

Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.

Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: 11/8/12

Field Determination. Date(s): 11/8/12

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There **Are no** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [*Required*]

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

- 1. Waters of the U.S.
 - a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 - b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or 3.24 acres. Wetlands: 4.18 acres.
 - **c. Limits (boundaries) of jurisdiction** based on: **1987 Delineation Manual** Elevation of established OHWM (if known):
- 2. Non-regulated waters/wetlands (check if applicable):³
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Wetland 1 through 10 are isolated wetlands with no outlet. These wetlands have no potential to affect interstate commerce under 328.3(a)(3)(i-iii) (See Section IV.B of this form); therefore, Wetland 1 through 10 are considered to be an intrastate, non-navigable, isolated water. As a result, Wetland 1 through 10 are determined to not be jurisdictional under Section 404 of the Clean Water Act.

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.

² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).

³ Supporting documentation is presented in Section III.F.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: Ellicott Creek.

Summarize rationale supporting determination: On June 12, 2008 an approved jurisdictional determination form for this TNW has been completed for this section of Ellicott Creek by the Buffalo District. Additionally, the Buffalo District has determined that a site/project specific jurisdictional determination involving this TNW is not required as a TNW designation has already been completed. This TNW jurisdictional determination form for this section of Ellicott Creek has been attached as supporting documentation.

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

- 1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) General Area Conditions: Watershed size: Pick List Drainage area: Pick List Average annual rainfall: inches Average annual snowfall: inches
 - (ii) Physical Characteristics:
 - (a) <u>Relationship with TNW:</u>
 ☐ Tributary flows directly into TNW.
 ☐ Tributary flows through <u>Pick List</u> tributaries before entering TNW.

Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project waters are **Pick List** aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain:

⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

		Identify flow route to TNW ⁵ : Tributary stream order, if known:
	(b)	General Tributary Characteristics (check all that apply): Tributary is: Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Tributary is: Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Characteristics (check all that apply): Image: Check all that apply (check all that apply): Image: Characteristics (check all that apply): Image: Check all that apply (check all that apply (check all that apply): Image: Check all that apply (check all that
		Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List.
		Primary tributary substrate composition (check all that apply):
		Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): %
	(c)	Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume:
		Surface flow is: Pick List. Characteristics:
		Subsurface flow: Pick List . Explain findings: . Dye (or other) test performed: .
		Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): the presence of litter and debris clear, natural line impressed on the bank the presence of litter and debris changes in the character of soil destruction of terrestrial vegetation shelving the presence of wrack line vegetation matted down, bent, or absent sediment sorting leaf litter disturbed or washed away scour sediment deposition multiple observed or predicted flow events water staining abrupt change in plant community other (list): .
		If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: Mean High Water Mark indicated by: oil or scum line along shore objects survey to available datum; fine shell or debris deposits (foreshore) physical markings/characteristics tidal gauges other (list):
(iii)	Char	mical Characteristics: acterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: tify specific pollutants, if known:

.

⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid.

(iv) Biological Characteristics. Channel supports (cl

- Riparian corridor. Characteristics (type, average width):
 Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:
- 2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

- (a) <u>General Wetland Characteristics:</u> Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain:
- (b) General Flow Relationship with Non-TNW:
 - Flow is: Pick List. Explain:
 - Surface flow is: Pick List Characteristics:
 - Subsurface flow: <u>Pick List</u>. Explain findings: Dye (or other) test performed:
- (c) <u>Wetland Adjacency Determination with Non-TNW:</u>
 - Directly abutting
 - Not directly abutting
 - Discrete wetland hydrologic connection. Explain:
 - Ecological connection. Explain:
 - Separated by berm/barrier. Explain:
- (d) <u>Proximity (Relationship) to TNW</u> Project wetlands are <u>Pick List</u> river miles from TNW. Project waters are <u>Pick List</u> aerial (straight) miles from TNW. Flow is from: <u>Pick List</u>. Estimate approximate location of wetland as within the <u>Pick List</u> floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: . Identify specific pollutants, if known: .

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:
- Characteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: <u>Pick List</u> Approximately () acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:

Directly abuts? (Y/N) Size (in acres)

Directly abuts? (Y/N)

Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

- 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
- 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
- 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

- TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: TNWs: linear feet width (ft), Or, 3.24 acres.
 Wetlands adjacent to TNWs: acres.
- 2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

Tributary waters: linear feet width (ft). Other non-wetland waters: acres.

Identify type(s) of waters:

- Non-RPWs⁸ that flow directly or indirectly into TNWs. 3.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

Tributary waters: linear feet width (ft). acres.

Other non-wetland waters:

Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

U Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

- Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. 6.
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.⁹

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

- Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories present
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or

Demonstrate that water is isolated with a nexus to commerce (see E below).

E.	ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE,
	DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY
	SUCH WATERS (CHECK ALL THAT APPLY): ¹⁰

- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain:

.

Other factors. Explain:

Identify water body and summarize rationale supporting determination:

¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

⁸See Footnote # 3.

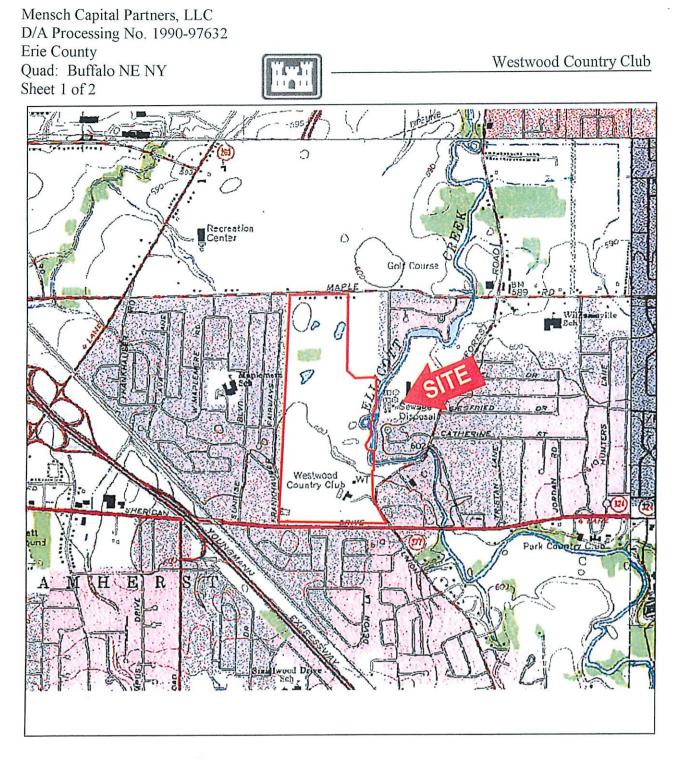
⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

	vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . Wetlands: acres.	·
F.	N-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Merior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on th "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above):	e
	ide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR ors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professions ment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: 2.696 acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: 4.721 acres.	al
	ide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where su ding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres.	ch
<u>SEC</u>	NIV: DATA SOURCES.	
A.	ORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked equested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: project location map, vegetation map, wetland eation map, and drainage map. Data sheets prepared/submitted by or on behalf of the applicant/consultant. \[\[Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: Ellicot Creek TNW Jurisdictional Determination dated 6/12/08. USGS NHD data. USGS 8 and 12 digit HUC maps. USDA Natural Resources Conservation Service Soil Survey. Citation: Erie County. National wetlands inventory map(s): State Freshwater Wetland Map. EEMA/FIRM maps: Oto-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: A Aerial (Name & Date): Aerials provided in ORM 11/8/12.	d
	Previous determination(s). File no. and date of response letter: Applicable/supporting case law: Applicable/supporting scientific literature: Other information (please specify):	

B. ADDITIONAL COMMENTS TO SUPPORT JD: Wetland 1 through 10 are outside Department of the Army jurisdiction because they do not meet the criteria for a jurisdictional water of the United States according to 33 CFR Part 328.3(a)(1-7) as follows:

1. does not/has not supported interstate or foreign commerce;

2. is not an interstate water/wetland;


- 3. the degradation or destruction of which would not affect interstate or foreign commerce and does not include such waters:
- (i) which are or could be used by interstate or foreign travelers for recreational or other purposes; or
- (ii) from which fish or shellfish are or could be taken and sold in interstate or foreign commerce; or
- (iii) which are used or could be used for industrial purpose by industries in interstate commerce
- 4. is not an impoundment of water otherwise defined as WOUS under the definition;
- 5. is not a tributary of waters identified in paragraphs (a)(1)-(4) of this section;
- 6. is not a territorial sea;
- 7. is not wetland adjacent to waters (other than waters that are themselves wetlands) identified in paragraphs (a)(1)-(6) of this section.

,

.

.

÷

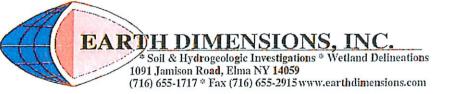
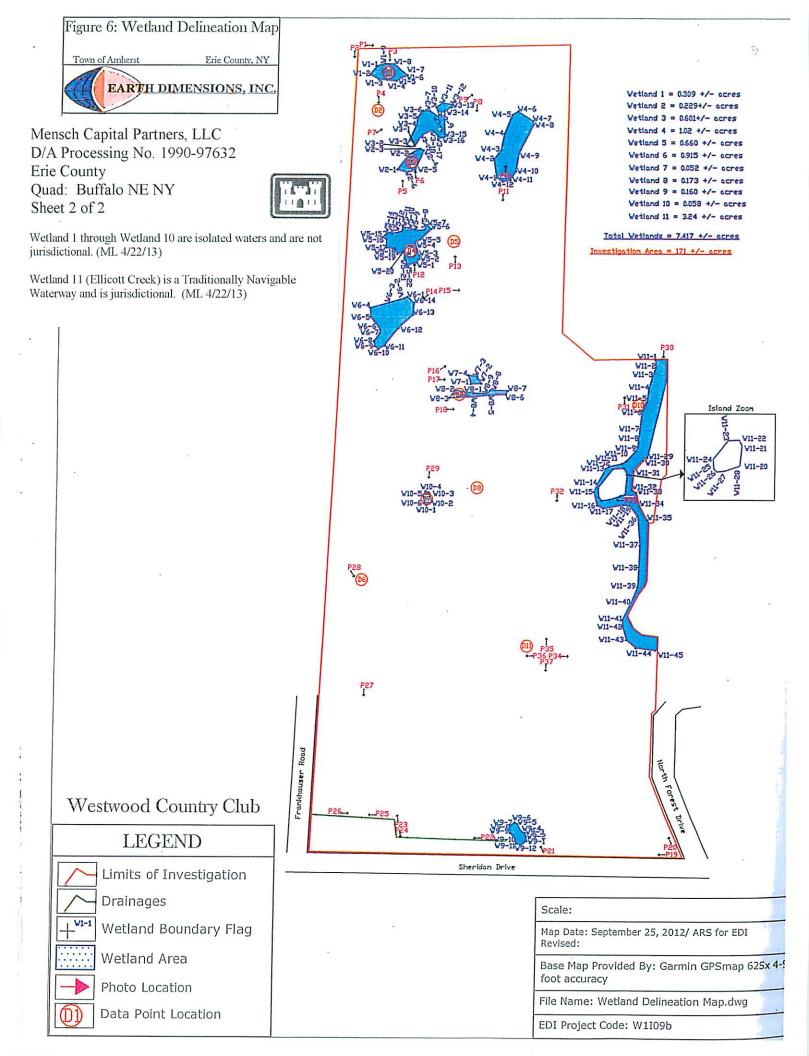



Figure 1:

<u>USGS 7.5 Minute Topographical Map</u> Buffalo NE Quadrangle/ 2002 DeLorme

Westwood Country Club Town of Amherst, Erie County, New York

From: Charles Rosenburg Sent: Friday, May 24, 2013 10:54 AM To: Jody Celeste Subject: Re. Westwood Project Site (Town of Amherst)- Wetland Delineation

Jody,

Sorry for the long delay in replying to your request. I started a response shortly after receiving your email but then got distracted and my draft message was buried. I inspected the DEC's GIS and reviewed the EDI delineation report for the Westwood Country Club parcel. I concur with the EDI statement on page 6 of the report that no state-regulated freshwater wetlands occur on or adjacent to the site. Also, please note that the DEC has not identified any "unmapped wetlands" (wetlands that meet DEC criteria but are not yet formally mapped) in the immediate vicinity of the project site. Please be aware that a state-protected stream (Ellicott Creek, Class B) occurs along a portion of the eastern boundary of the parcel. Any planned activities that would affect the bed or banks of Ellicott Creek (within 50 feet) would require an Article 15 Protection of Waters permit from DEC. The Region 9 Division of Environmental Permits can provide more information as necessary. If you have any questions, don't hesitate to contact me by phone or email.

Chuck

April 24, 2014 Project No. BE-13-192

CORPORATE/ BUFFALO OFFICE 5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110 Fax: (716) 649-8051

ALBANY OFFICE PO Box 2199 Ballston Spa, NY 12020

5 Knabner Road Mechanicville, NY 12118 Phone: (518) 899-7491 Fax: (518) 899-7496

CORTLAND OFFICE 60 Miller Street Cortland, NY 13045 Phone: (607) 758-7182 Fax: (607) 758-7188

 ROCHESTER OFFICE
 535 Summit Point Drive Henrietta, NY 14467
 Phone: (585) 359-2730
 Fax: (585) 359-9668

MEMBER

Mr. Bradley A. Packard, Project Manager Mensch Capital Partners, LLC 350 Essjay Road, Suite 304 Williamsville, New York 14221

Re: Geotechnical Evaluation Report for Proposed Westwood Country Club Development Project North Forest Road Amherst, New York

Dear Mr. Packard:

Empire Geo-Services, Inc. is pleased to submit three (3) copies of the enclosed Geotechnical Evaluation Report to Mensch Capital Partners, LLC (Mensch) for the above referenced project. We have also forwarded to you, via e-mail, an electronic pdf file copy of this report for your use and distribution, as appropriate.

Please contact me should you have any questions or wish to discuss this report. Thank you for considering Empire for this work and we look forward to working with you through completion of this project.

Sincerely,

EMPIRE GEQ-SERVICES, INC.

John J. Danzer, P.E.

Senior Geotechnical Engineer

- Enc.: Geotechnical Evaluation Report (3 Copies) & Electronic pdf file copy / via e-mail
- cc: Mr. Robert J. Pidanick Nussbaumer & Clarke, Inc. w/ Electronic pdf copy via e-mail only

CORPORATE/ BUFFALO OFFICE 5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110 Fax: (716) 649-8051

ALBANY OFFICE PO Box 2199 Ballston Spa, NY 12020

5 Knabner Road Mechanicville, NY 12118 Phone: (518) 899-7491 Fax: (518) 899-7496

CORTLAND OFFICE 60 Miller Street Cortland, NY 13045 Phone: (607) 758-7182 Fax: (607) 758-7188

 ROCHESTER OFFICE
 535 Summit Point Drive Henrietta, NY 14467
 Phone: (585) 359-2730
 Fax: (585) 359-9668

MEMBER

Geotechnical Evaluation Report for Proposed Westwood Country Club Redevelopment Project North Forest Road Amherst, New York

Prepared For:

Mensch Capital Partners, LLC 350 Essjay Road, Suite 304 Williamsville, New York 14221

Prepared By:

Empire Geo-Services, Inc. 5167 South Park Avenue Hamburg, New York 14075

Project No. BE-13-192 April 2014

Geotechnical Evaluation Report for Proposed Westwood Country Club Redevelopment Project North Forest Road Amherst, New York

EXECUTIVE SUMMARY

Introduction

This report summarizes the results of a subsurface exploration program and geotechnical engineering evaluation completed by Empire Geo-Services, Inc. (Empire) for a proposed mixed use redevelopment project being considered by Mensch Capital Partners, LLC on the site of the Westwood Country Club off North Forest Road in Amherst, New York. The approximate location of the project site is shown on Figure No. 1.

The proposed redevelopment project is proposed within the existing Westwood Country Club golf course area, which is bounded by Maple Road to the north, North Forest Road, Ellicott Creek and the Audubon Par 3 Golf Course to the east, Sheridan Drive to the south and Frankhauser Road and Fairways Boulevard to the west.

The proposed redevelopment project is currently planned to include the following:

- 1 to 2 story single family residential home lots in the northern eastern portion of the site;
- Adjoining 1 to 2 story townhome style residential units in the northern western portion of the site;
- Larger 1 to 2 story single family residential home lots in the eastern center portion of the site;
- An approximate 30 acre parcel in the west center potion of the site for senior living development;
- Mixed use town center type development in the southern portion of the site including commercial/retail buildings, office buildings, multi family townhomes and multi family apartments; and
- Re-use of the existing club house building for conference and reception use, in association with construction of an adjoining hotel building.

In addition the project will also include construction of roadways, access drives and parking lot areas with access to the development from Sheridan Drive and Maple Road.

The subsurface exploration program consisted of a total of forty-nine (49) test borings, designated as B-1 through B-49, which were advanced across the site. Thirty (30) borings were advanced to apparent bedrock refusal, with the remaining nineteen (19) borings being advanced to a planned depth of 20 feet and then terminated. Apparent bedrock refusal was encountered at depths ranging between 13.5 feet and 62.5 feet and confirmed by rock coring in seven (7) of the test borings. Three (3) groundwater observation wells

were installed in borings B-6, B-24 and B-48 to help assess groundwater conditions on the site, Geotechnical laboratory testing of selected recovered soil samples was also completed.

SJB Services, Inc. (SJB), our affiliated drilling and materials testing company, completed the test borings and laboratory testing for the subsurface exploration program. The test borings and groundwater observation well installations were completed between December 3rd, 2013 and February 5, 2014. The approximate locations of the test borings with respect to an aerial photograph of the existing site are shown on Figure No. 2 and the approximate locations of the test borings with respect to the currently proposed conceptual site development plan are shown on Figure No. 3.

The elevations presented in this report were referenced to the rim of an electrical manhole (temporary benchmark established by SJB), which is located off the front of the existing golf cart storage building, located in the south center portion of the site, as shown on Figure No. 2. This benchmark has an elevation El. datum of 602.38 feet, as measured and reported by Nussbaumer & Clarke, Inc.

This report summarizes the subsurface conditions encountered by the exploration program and presents preliminary geotechnical engineering considerations and recommendations to assist in planning and preliminary design of the site redevelopment. Specifically our evaluation addresses the soil, bedrock and groundwater conditions present on the site, with regard to their impacts on foundation, slab-on-grade floor construction, underground utility construction and pavement construction.

Existing Site Information

As part of our study Empire researched existing information concerning the geologic and flood plain conditions present in the Westwood Country Club site area, including the Soil Survey for Erie County, Surficial Geology and Bedrock Geology Maps, and FEMA Flood Plain Mapping.

The USDA – Erie County Soil Survey data indicate that the surficial soils (i.e. soils typically within the upper 5 feet of the existing ground surface) within the Westwood Country Club facility site consist predominately of "clay loam", "silt loam", and "loamy fine sand" type soils. These surficial soil types are similarly classified as CL, ML and SM group soils using the Unified Soil Classification System (USCS), respectively.

Geologic maps prepared by the New York State Geological Survey indicate the surficial overburden soils present consist predominately of glacial till deposits of clay, silt and bouldery clay, with glacial outwash deposits of sand and gravel along Ellicott Creek. The uppermost bedrock formation in this area is the upper (late) Silurian period, Camillus Shale formation of the Salina Geologic Group. This bedrock formation is characterized as medium hard, weathered to sound Shale rock, with occasional gypsum partings and seams and has a generally fair to good rock mass quality.

The FEMA flood plain mapping indicates the 500 year and 100 year flood plains from Ellicott Creek extend into the eastern portions of the Westwood Country Club facility site. The 500 year flood elevations range from El. 595 feet to El. 594 feet where it extends onto the site from the southern end to the center portion, and to about El. 593 feet where it extends onto the northern portion of the site.

Subsurface Exploration Results

The subsurface conditions encountered in the test borings consisted generally of surface topsoil, along with man placed fill or disturbed indigenous soils typically extending to depths ranging between about 2 feet and 5 feet, which are underlain by predominately indigenous glacial till deposited silty clay, clayey silt, silt, and silty or clayey sand soils, overlying the Camillus Shale Bedrock. Table 2 summarizes the surface topsoil depths, the depths and bottom elevation of the man-placed fill, the depth and elevation of auger refusal (i.e. apparent bedrock refusal), and the groundwater observations made in the test borings and the wells installed for this investigation.

The indigenous soils are classified as CL, CH, ML, SM-SC and SM group soils using the Unified Soil Classification System (ASTM D2488). The consistency of the cohesive silty clay and clayey silt soils typically ranged between medium and hard, while the more granular silty or clayey sand soils and the non-plastic silt soils were typically of a firm to very compact relative density. Deeper soft to very soft clay soil deposits having SPT "N" values of less than 4 or "woh - weight of hammer" (i.e. the sample spoon was advanced with only the weight of the drop hammer and drill rods applied statically to the sample spoon), were encountered in only a few test borings (B-1, B-18, B-20 and B-25). Accordingly, significant deposits of highly compressible soft to very soft clays, as present in other portions of northern Amherst, are generally absent within this site.

Shale bedrock, as indicated by the auger refusal conditions, and confirmed by rock coring, was encountered at depths ranging between about 13.5 feet (boring B-10) and 62.5 feet (boring B-1), with corresponding elevations ranging between approximately El. 586.9 feet to El. 543.4 feet. The bedrock core recovered consisted generally of gray, medium hard, sound, thinly bedded to bedded Shale Rock, with occasional partings, seams and layers of gypsum. The core recoveries ranged between 100% and 50%, and the rock quality designation (RQD) values ranged between 20% and 82% indicating the recovered rock cores have a varying rock mass quality ranging between "very poor" and "good".

Based on the water levels obtained at the completion of coring in borings B-4, B-43 and B-48, as well as the readings obtained in borings B-9, B-20 and B-25 following completion soil sampling to auger refusal, and the April 1st, 2014 level in well B-24 tends to suggest that a permanent groundwater table may be present at elevations in the range of about El 580 feet to El. 589 feet, although this is not confirmed by the other groundwater observation wells at this time, as they may be partially impacted by upper perched groundwater.

It also appears that zones of perched or trapped groundwater are present in the topsoil and the fill soils at or near the ground surface, at various locations on the site, due to the relatively low permeability of the underlying soils present, and depending on site drainage conditions. Such conditions were observed during the subsurface exploration where areas of standing water and spongy surface conditions were present, hindering some of the drill rig access.

Laboratory Test Results

The laboratory test data indicates the clay soils encountered within the upper reaches of the site below the immediate surface soils, (i.e. within the anticipated depths of proposed spread foundations) appear to be partially desiccated and have a generally non-existent to low potential susceptibility to shrinkage. Also, given the relatively medium stiff to hard nature of the indigenous clay soils and their inherent low permeability it is unlikely saturation and potential swelling of these soils would occur in an undisturbed state. The upper surficial clayey silt /silty clay fill soils, however, which are in a less dense condition, may be more susceptible to potential shrinkage and swelling where they are inundated with poor draining surface water.

Based on DIPRA tests performed the site soils tested appear to have a low corrosion potential to ductile iron waterline pipes and other buried metallic pipes/elements. Accordingly, cathodic protection or a suitable protective coating of metallic pipes and conduits, to resist potential corrosion, does not appear necessary. Also based on sulfate concentrations, the soils are considered to have a negligible potential for sulfate exposure. Accordingly, a Type I-II Portland Cement appears will be acceptable for the concrete structure elements placed in these soils.

Preliminary Geotechnical Considerations and Recommendations

General

The indigenous soils encountered consist predominately of partially desiccated, medium stiff to hard silty clay and clayey silt and firm to very compact silty or clayey sand deposits with some intermixed gravel, and occasional cobbles/boulders and shale fragments. These soils are non-organic, and are not considered to be highly compressible, nor highly susceptible to shrinkage, swelling, or liquefaction. Significant deposits of highly moist, soft to very soft clays, as present in other areas of northern Amherst and which have been problematic to residential foundation/structure movement and distress (i.e. basement foundation subsidence / settlement and lateral movement), are generally absent within this site.

The indigenous soil conditions encountered in the test borings are generally considered suitable to support the anticipated residential and mixed use structure loads using conventional spread foundation systems. In a few cases (i.e. within borings B-9, B-11, B-19, B-21, B-22 and B-45) some limited zones of weaker soils were encountered which may impact the use of spread foundations. Accordingly, these conditions possibly may

require consideration of deep foundations (i.e. driven piles) particularly if a multiplestory more heavily loaded building structure would be proposed at or near these locations.

The existing fill and indigenous soil subgrades are also considered to be generally suitable for basement, at-grade and garage slab-on-grade floor construction, with proper site preparation. The soils encountered are also considered generally suitable for construction of the proposed infrastructure, including the roadways, parking lots, storm and sanitary sewers, waterlines and retention pond structures. The poor draining surface conditions, however, are expected to make site stripping and subgrade preparation difficult, particularly during wet periods

Given, the relatively low to medium low permeability of the soils present, both permanent and perched groundwater seepage if encountered should be relatively slow and of low quantities. Accordingly, these conditions should not significantly impact basement and utility construction. It is anticipated that conventional sump and pump methods of dewatering should generally be sufficient to control surface water, as well as permanent and perched groundwater seepage conditions, should they be encountered.

Based on the subsurface conditions encountered, the overall site should be classified as Seismic Site Class "D" in accordance with the Building Code of New York State. Therefore, seismic design may be based on this site classification.

Foundation Support

Preliminarily, it is expected that spread foundations can be sized, based on net allowable bearing capacities in the range of about 2,000 to 4,000 pounds per square foot (psf) \pm , depending on location, foundation bearing depths and actual structure loads.

Spread foundations should bear on suitable, undisturbed, indigenous soil bearing grades, after the removal of all fill soils and any unsuitable indigenous soft or wet soils. Alternatively, the foundations may also bear on Engineered Fill (i.e. compacted Structural Fill or flowable backfill), which is placed over the suitable indigenous soil bearing grades, following excavation and removal of fill soils and any unsuitable indigenous soils which are present below the design bearing grade elevation of the footings.

Where zones of softer soils were encountered, which may impact the use of spread foundations for heavier building structures, the use of driven H-piles or pipe piles driven to refusal on the Shale bedrock appear would be the best suited deep foundation system option for the site conditions present. For preliminary information, a driven HP12x53 H-pile, driven to refusal on the bedrock, would be expected to develop an axial compressive capacity in the range of about 100 to 120 tons \pm per pile. Other pile sections can also be used, based on product availability and costs, which would provide higher or lower allowable axial capacities, based on the actual pile section.

Basement Structure Design

Where suitable foundation drainage is provided, the basement walls can be designed for "at rest" lateral earth pressure computed on the basis of an "equivalent fluid unit weight" of 70 pounds per cubic foot (pcf). This is based on the assumption that the wall backfill beyond the drainage system is a suitable well draining granular backfill material, such as a crusher run stone Structural Fill. In this case suitable damp proofing of the walls and floors should also be provided. Alternatively, the basement structures could also be designed to resist potential full hydrostatic pressure. In such case the basement structure should also be fully water proofed.

The use of the on-site clayey silt, silty clay and silty or clayey sand soils to backfill the basement walls is not recommended as they will be susceptible to potential swelling in a looser disturbed state, which could cause additional lateral pressures on the basement walls. The on-site soils could be used, however, to backfill non-earth retaining foundation walls provided they can be properly placed and compacted to a stable and well engineered condition.

Slab-on Grade Floor Construction

The building floors can be constructed as slab-on-grade following proper subgrade preparation. For preliminary design purposes, a minimum of 6-inches of Subbase Stone is recommended beneath the lightly loaded floor slabs (residential floors, lightly loaded office floors, etc.). A minimum 12-inch thick layer of Subbase Stone is recommended beneath more heavily loaded floor slabs (i.e. garage areas, storage areas, mechanical rooms, etc.). A suitable stabilization/separation geotextile, such as Mirafi 500X, should be placed over the existing soil or fill soil subgrades prior to placement of the Subbase Stone layer.

Seismic Design Considerations

Based on the subsurface conditions encountered, the overall site should be classified as Seismic Site Class "D" in accordance with the Building Code of New York State. The soil conditions encountered are generally not considered to be susceptible to potential liquefaction in the case of a seismic event. Therefore, seismic design may proceed based on these considerations.

It is possible that a seismic shear wave velocity study of the site may refine and possibly upgrade the seismic design site class. This may be particularly beneficial in the areas of the mixed use commercial and apartment buildings depending on the costs associated with seismic reinforcement of these structures. It should be understood, however, that there is no guarantee that an upgrade can be made if a seismic shear wave study is performed,

Pavement Design Considerations

The Town of Amherst requires a typical pavement section consisting of the following components for residential and commercial development roadways:

Town of Amherst Asphalt Concrete Pavement Section:

- 1.5 inches Top Course
- 2.5 inches Binder Course
- 4.0 inches Base Course
- 11 inches Subbase Stone Course

We would recommend, however, the Town of Amherst pavement section also include a suitable stabilization/separation geotextile (i.e. Mirafi 600X or suitable equivalent).

Pavement design recommendations are also provided for two (2) flexible pavement structure types within the proposed mixed use development areas. These include the following:

Heavy Duty Asphalt Concrete Pavement (for the entrance, access drives and pavement areas, which will be subject to delivery truck traffic):

- 1.5 inches Top Course
- 3.0 inches Binder Course
- 15 inches Subbase Stone Course
- Stabilization/Separation Geotextile
- Prepared Subgrade

Light Duty Asphalt Concrete Pavement (for automobile / light SUV only parking areas):

- 1.5 inches Top Course
- 2.0 inches Binder Course
- 10 inches Subbase Stone Course
- Stabilization/Separation Geotextile
- Prepared Subgrade

The installation of suitable drainage is also recommended to drain the pavement subbase course and subgrades in order to limit the potential for frost action and improve pavement structure performance and design life.

Underground Utility Construction

The in-situ soils should provide generally suitable subgrade conditions for underground utility construction, including storm and sanitary sewers, water lines, gas lines and buried

electrical / communication conduits. Accordingly, standard bedding materials and thicknesses can generally be used to support this infrastructure.

Site Preparation

Measures to improve site drainage should be implemented as necessary prior to commencing the site stripping and subgrade preparation work.

All existing structures, trees, stumps, vegetation, topsoil, organic soils, etc., and any other deleterious materials within the proposed building pad areas and pavement areas should be removed. Following stripping and removal of the surface materials (i.e. topsoil, asphalt pavement, concrete pads and structures, etc.), the exposed subgrades should be proof-rolled. The subgrade proof-rolling should be done under the guidance of, and observed by qualified geotechnical engineering personnel. The subgrade fill placement necessary to raise the site grades and/or the placement of subbase courses may proceed following proper site preparation and acceptance of the existing soil subgrades.

The on-site soils could be used for constructing the fills for establishing the building pad and pavement areas, provided they can be properly placed and compacted in a controlled manner and to a stable well engineered condition, in accordance with our recommendations. It should be understood, however, that these soils will be very difficult to dry and work with. Therefore the use of imported granular fill materials will be better suited for building pad, roadway and parking lot fill areas. Efforts should be made to maintain the subgrades in a dry and stable condition at all times, and limit construction traffic directly over these soils, particularly if they become wet.

Additional Geotechnical Investigations

Additional investigations and further evaluations are recommended for final design when final building development plans and loading conditions, along with final site development plans, are established, as discussed further in the report. Empire can assist in planning the locations and scope of the additional explorations and evaluations that may be necessary for final design.

Closing

Additional more detailed site condition findings, along with considerations and recommendations for permitting, planning and preliminary design of the proposed site redevelopment project are presented in the Geotechnical Evaluation Report, which follows.

TABLE OF CONTENTS

1.00	INTRO	DDUCTION	1
	1.10	GENERAL	1
	1.20	SITE DESCRIPTION AND PROPOSED DEVELOPMENT PROJECT	2
2.00	SUBSI	JRFACE EXPLORATION	3
3.00	LABOI	RATORY TESTING PROGRAM	5
4.00	EXIST	ING SITE INFORMATION	6
	4.10	SOIL SURVEY INFORMATION	6
	4.20	SURFICIAL AND BEDROCK GEOLOGY	7
	4.30	FLOOD PLAIN MAPPING	7
5.00	SUBSI	JRFACE CONDITIONS	8
	5.10	GENERAL SUBSURFACE CONDITIONS ENCOUNTERED	8
	5.20	SURFACE MATERIALS AND FILL SOILS	9
	5.30	INDIGENOUS SOILS	9
	5.40	BEDROCK	10
	5.50	GROUNDWATER CONDITIONS	10
6.00	LABOI	RATORY TEST RESULTS	13
	6.10	SHRINKAGE/SWELL POTENTIAL OF CLAY SOILS	13
	6.20	SOIL CORROSION AND SULFATE ATTACK POTENTIAL	14
7.00		MINARY GEOTECHNICAL CONSIDERATIONS AND MMENDATIONS FOR SITE DEVELOPMENT	16
	7.10	GENERAL CONSIDERATIONS	16
	7.20	FOUNDATION SUPPORT	18

	7.30	BASEMENT STRUCTURE DESIGN CONSIDERATIONS	19
	7.40	SLAB-ON-GRADE FLOOR CONSTRUCTION	20
	7.50	SEISMIC DESIGN CONSIDERATIONS	21
	7.60	PAVEMENT DESIGN CONSIDERATIONS	22
	7.70	UNDERGROUND UTILITY CONSTRUCTION	24
	7.80	SUBGRADE PREPARATION FOR PAVEMENT AND SLAB-ON-GRADE CONSTRUCTION	24
	7.90	STRUCTURAL FILL AND SUITABLE GRANULAR FILL MATERIALS	27
8.00	RECO	MMENDATIONS FOR ADDITIONAL GEOTECHNICAL INVESTIGATIONS	28

TABLES

TABLE 1 – SUMMARY OF LABORATORY INDEX TEST	ΓS
--	----

TABLE 2 – SUMMARY OF SUBSURFACE CONDITIONS

FIGURES

FIGURE 1 – SITE LOCATION PLAN

FIGURE 2 – SUBSURFACE EXPLORATION PLAN, EXISTING SITE CONDITIONS

FIGURE 3 – SUBSURFACE EXPLORATION PLAN, PROPOSED SITE DEVELOPMENT

APPENDICES

APPENDIX A – TEST BORING LOGS

APPENDIX B – LABORATORY TEST DATA

APPENDIX C – EXISTING SITE INFORMATION

APPENDIX D – GEOTECHNICAL REPORT LIMITATIONS

1.00 INTRODUCTION

1.10 GENERAL

This report summarizes the results of a subsurface exploration program and geotechnical engineering evaluation completed by Empire Geo-Services, Inc. (Empire) for a proposed mixed use redevelopment project being considered on the site of the Westwood Country Club off North Forest Road in Amherst, New York. The approximate location of the project site is shown on Figure No. 1.

Mensch Capital Partners, LLC (Mensch) retained Empire to complete this work, which was done in accordance with our proposal dated October 11, 2013. This work was completed to evaluate the geotechnical characteristics of the site, with regard to foundation support of the proposed mixed use buildings being considered for redevelopment of the site, and to provide preliminary geotechnical design and construction considerations / recommendations to assist the design team with planning and preliminary design.

The subsurface exploration program completed by Empire consisted of a total of forty-nine (49) test borings advanced across the site, of which thirty (30) borings were advanced to apparent bedrock refusal at depths ranging between 13.5 feet and 62.5 feet, with the remaining nineteen (19) borings being advanced to a planned depth of 20 feet and then terminated. Bedrock was cored in seven (7) of the test borings advanced to refusal. In addition, three (3) groundwater observation wells were installed and geotechnical laboratory testing of selected recovered soil samples was also completed. SJB Services, Inc. (SJB), our affiliated drilling and materials testing company, completed the test borings and laboratory testing for the subsurface exploration program.

On this basis, Empire prepared this report, which summarizes the subsurface conditions encountered by the test borings, groundwater observation wells and laboratory testing, and presents preliminary geotechnical engineering considerations and recommendations to assist in planning and preliminary design of the site redevelopment. Specifically our evaluation addresses the soil, bedrock and groundwater conditions present on the site, with regard to their impacts on foundation, slab-on-grade floor construction, underground utility construction and pavement construction.

1.20 SITE DESCRIPTION AND PROPOSED DEVELOPMENT PROJECT

The proposed site redevelopment project comprises approximately 170 acres and is bounded within the area of Maple Road to the north, North Forest Road, Ellicott Creek and the Audubon Par 3 Golf Course to the east, Sheridan Drive to the south and Frankhauser Road and Fairways Boulevard to the west. The redevelopment project is generally proposed within the existing Westwood Country Club golf course area, which currently consists of the golf tees, fairways, hazards, greens along with bordering cart paths, tall grass, trees, brush and ponds. The main club house building, pool and tennis amenities, maintenance buildings, access drive and parking lot areas are located in the southeast portion of the site, with access from North Forest Road. Grades across the site gradually drop in elevation about 10 to 13 feet from south (i.e. Sheridan Drive) to north (Maple Road). Figure No. 2 presents an aerial photograph of the existing site, along with the approximate locations of the test borings plotted on the plan.

The proposed redevelopment project is currently planned to include the following:

- 1 to 2 story single family residential home lots in the northern eastern portion of the site;
- Adjoining 1 to 2 story townhome style residential units in the northern western portion of the site;
- Larger 1 to 2 story single family residential home lots in the eastern center portion of the site;
- An approximate 30 acre parcel in the west center potion of the site for senior living development;
- Mixed use town center type development in the southern portion of the site including commercial/retail buildings, office buildings, multi family townhomes and multi family apartments; and
- Re-use of the existing club house building for conference and reception use, in association with construction of an adjoining hotel building.

In addition the project will also include construction of roadways, access drives and parking lot areas with access to the development from Sheridan Drive and Maple Road. Figure No. 3 presents a conceptual plan of the proposed site development along with the approximate locations of the test borings plotted on the plan.

The1 to 2 story single family residential homes and townhome residential units are expected to consist of wood framed construction, with possible basement structures. The commercial/retail buildings, office buildings, multi family townhomes and multi family apartments are also expected to be 1 to 2 stories with

either wood or steel frame type construction, and with at grade ground floors constructed as slab-on-grade. Accordingly, basements are not anticipated for these structures. The new hotel building is expected to be multiple-story with steel frame or masonry with pre-cast plank type construction. The hotel building is also not expected to include a basement structure.

At this time the final building configurations and structure loads have not been established. The development plan currently anticipates that the building structures can generally be supported using conventional spread foundation systems, although it is understood that deep foundation systems could be necessary in some cases, depending on the actual structure loads and soil conditions present.

2.00 SUBSURFACE EXPLORATION

The subsurface exploration program completed to characterize the subsurface conditions consisted of a total of forty-nine (49) test borings, designated as B-1 through B-49. In addition, groundwater observation wells were installed in three (3) of the test borings (B-6, B-24 and B-48). The test borings and groundwater observation well installations were completed by SJB between December 3rd, 2013 and February 5, 2014. The approximate locations of the test borings with respect to an aerial photograph of the existing site are shown on Figure No. 2 and the approximate locations of the test borings with respect to the currently proposed conceptual site development plan are shown on Figure No. 3.

The proposed test boring locations were initially established on a site plan, along with location coordinates, prepared by Nussbaumer & Clarke, Inc. (N&C), which were provided to Empire through Mensch. The boring locations were established to provide general coverage over the project site. Using this plan and the location coordinates, SJB then staked the boring locations in the field using hand held global positioning satellite (gps) instrumentation and visual observations referenced to existing site features. The locations should be considered accurate only to the degree implied by the methodologies used.

The ground surface elevation at each test boring location was measured and recorded by SJB using laser survey level techniques. The elevations were referenced to the rim of an electrical manhole (benchmark established by SJB) located off the front of the existing golf cart storage building, located in the south center portion of the site. The approximate location of the benchmark is shown on Figure No. 2 and has an elevation El. datum of 602.38 feet, as measured and reported by N&C.

Thirty (30) borings were advanced to apparent bedrock refusal at depths ranging between 13.5 feet and 62.5 feet, with the remaining nineteen (19) boring advanced to a depths ranging between about 18 feet and 22 feet. Bedrock was cored in seven (7) of the test borings advanced to refusal (borings B-1, B-4, B-29, B-31, B-43, B-45 and B-47). The borings advanced to apparent bedrock refusal and the borings advanced to a depth of 18 to 22 feet (scheduled to be 20 feet) are designated on Figures No. 2 and No. 3.

The test borings were made using a Central Mine Equipment (CME) model 550X and a CME model 550SE rubber tire, all terrain drill rigs, using hollow stem auger and split spoon sampling techniques. Split spoon samples and Standard Penetration Tests (SPTs) were taken continuously from the ground surface to a depth of 12 feet or 16 feet and in intervals of five feet or less below the zone of continuous sampling until boring completion. The split spoon sampling and SPTs were completed in general accordance with *ASTM D 1586* - "*Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils*".

After reaching auger refusal at test boring locations B-1, B-4, B-29, B-31, B-43, B-45 and B-47 the refusal material encountered was cored using a NQ size double tube core barrel in accordance with *ASTM D 2113 – "Standard Practice for Rock core Drilling and Sampling of Rock for Site Investigation"*. Five (5) feet of bedrock was cored at each of these locations.

Groundwater observation wells were installed in test borings B-6, B-24 and B-48 to help assess groundwater levels on the site. The wells were installed with hollow stem auger drilling techniques in general accordance with *ASTM D5092 Standard Practice for Design and Installation of Ground Water Monitoring Wells in Aquifers.* The well installation consisted of a 2-inch diameter PVC well screen and riser pipe with sand filter, bentonite seal and soil backfill. A protective flush mount surface casing and surrounding concrete seal were installed at the surface of boring B-6 to finish the well installation. The wells installed at borings B-24 and B-48 were completed with a PVC stickup riser and cap, and without a protective surface casing. Additional details regarding the construction of the observation wells are shown on the Monitoring Well Completion Records presented following their respective test boring logs in Appendix A.

A geologist from SJB prepared the test boring logs based on visual observation of the recovered soil samples and bedrock core, along with review of the driller's field notes. The soil samples were described based on visual/manual estimation of the grain size distribution, along with characteristics such as color, relative density, consistency, moisture, etc. In addition the Unified Soil Classification System (USCS) group symbols were also established and are presented on the logs for the soil types encountered. The recovered rock core samples were also described, including characteristics such as color, rock type, hardness, weathering, bedding thickness, core recovery and rock quality designation (RQD). The test boring logs are presented in Appendix A, along with general information and a key of terms and symbols used to prepare the logs.

3.00 LABORATORY TESTING PROGRAM

Selected recovered soil samples were tested in SJB's geotechnical testing laboratory to confirm the visual soil classifications and provide index properties to aid in our evaluations. The laboratory testing program included the following index tests:

- 1. Moisture content in accordance with ASTM D 2216 "Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass".
- 2. Grain size distribution in general accordance with ASTM C136 "Standard Test Method for Particle-Size Analysis of Soils";
- 3. Liquid limit, plastic limit and plasticity index in accordance with ASTM D 4318 "Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils".
- 4. In addition, the samples tested for liquid limit, plastic limit and plasticity index were also tested for shrinkage limit in accordance with ASTM D 427 "Test Method for Shrinkage Factors of Soils by Mercury Method". Using the shrinkage test data and the moisture content data, Empire calculated the coefficient of linear extensibility (COLE factor) of the clay soils at the various measured moisture contents, to qualitatively evaluate their shrinkage potential. The COLE factors were determined following a procedure similar to those described in the Soil Survey Investigation Report No. 42, Soil Survey Laboratory Methods Manual 1996, USDA, NRCS, NSSC.

The soil samples tested for the above index properties, as well as a summary of the results, are presented on Table 1.

Composite soil samples were also prepared from test borings B-6 (samples S-2 through S-4, 2.0'-8.0'); B-34 (samples S-2 through S-5, 2.0'-10.0'); and B-45 (samples S-2 through S-5, 2.0'-10.0') and were tested for the following:

- Resistivity, redox, pH, moisture, and sulfides according to procedures established by the Ductile Iron Pipe Research Association (DIPRA test) to provide an indication of the corrosion potential of the on-site soils with regard to buried metallic conduits; and
- Sulfate and chloride concentration in the soils, with regard to potential impacts on buried concrete structures.

This laboratory test data is also presented in Appendix B, as well as summarized on Table 1.

4.00 EXISTING SITE INFORMATION

As part of our study Empire researched existing information concerning the geologic and flood plain conditions present in the Westwood Country Club site area. This included:

- USDA Natural Resource Conservation Service Soil Survey for Erie County (<u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>);
- NYSED New York State Museum and Science Service Surficial Geology and Bedrock Geology Maps (<u>http://www.nysm.nysed.gov/gis/</u>); and
- Erie County On-Line GIS Mapping System FEMA Flood Plain Mapping (<u>http://gis1.erie.gov/Geocortex/Essentials/Web/viewer.aspx?Site=FEMA&r eloadkey=true</u>).

4.10 SOIL SURVEY INFORMATION

The USDA – Erie County Soil Survey data indicate that the surficial soils (i.e. soils typically within the upper 5 feet of the existing ground surface) within the Westwood Country Club facility site consist predominately of "clay loam", "silt loam", and "loamy fine sand" type soils. These surficial soil types are similarly classified as CL, ML and SM group soils using the Unified Soil Classification System (USCS), respectively.

These soils typically consist of silty clay, clayey silt, non-plastic silt and silty fine sand and are of a medium-low to low permeability (i.e. poor draining). These soils are also considered to be highly moisture sensitive and have a relatively poor value (i.e. difficult to place and compact) as subgrade fill material to raise site grades beneath slab-on-grade and pavement construction. The locations of the various surficial soil types, as mapped by the Erie County Soil Survey, are presented in Appendix C1.

4.20 SURFICIAL AND BEDROCK GEOLOGY

Geologic maps prepared by the New York State Geological Survey indicate the surficial overburden soils present within the Westwood Country Club facility site consist predominately of glacial till deposits of clay, silt and bouldery clay, with glacial outwash deposits of sand and gravel along Ellicott Creek.

The geologic maps indicate the uppermost bedrock formation in this area is the upper (late) Silurian period, Camillus Shale formation of the Salina Geologic Group. This bedrock formation is characterized as medium hard, weathered to sound Shale rock, with occasional gypsum partings and seams and has a generally fair to good rock mass quality.

Excerpted portions of the surficial soil and bedrock geologic maps, along with applicable associated legends, are presented in Appendix C2.

4.30 FLOOD PLAIN MAPPING

Review of the FEMA flood plain mapping indicates the 500 year and 100 year flood plains from Ellicott Creek extend into the eastern portions of the Westwood Country Club facility site. The 500 year flood elevations range from El. 595 feet to El. 594 feet where it extends onto the site from the southern end to the center portion, and at about El. 593 feet where it extends onto the northern portion of the site.

The flood plain mapping obtained from the Erie County On-Line GIS Mapping System is presented in Appendix C3.

5.00 SUBSURFACE CONDITIONS

5.10 GENERAL SUBSURFACE CONDITIONS ENCOUNTERED

The test borings completed at the site encountered soil and bedrock conditions generally similar to those indicated by existing site information which was researched, as described above in Section 4.00. The stratigraphy encountered in the test borings consisted generally of surface topsoil, along with man placed fill or disturbed indigenous soils typically extending to depths ranging between about 2 feet and 5 feet, which are underlain by indigenous glacial till deposited silty clay, clayey silt, silt, and silty or clayey sand soils, overlying Shale Bedrock.

The consistency of the cohesive silty clay and clayey silt soils typically ranged between medium and hard, while the more granular silty or clayey sand soils and the non-plastic silt soils were typically of a firm to very compact relative density. Deeper soft to very soft clay soil deposits having SPT "N" values of less than 4 or "woh - weight of hammer" (i.e. the sample spoon was advanced with only the weight of the drop hammer and drill rods applied statically to the sample spoon), were encountered in only a few test borings (B-1, B-18, B-20 and B-25). Accordingly, significant deposits of wet, highly compressible, soft to very soft clays, as present in other portions of northern Amherst, are generally absent within this site.

Shale bedrock, as indicated by the auger refusal conditions, and confirmed by rock coring, was encountered at depths ranging between about 13.5 feet (boring B-10) and 62.5 feet (boring B-1), with corresponding elevations ranging between approximately El. 586.9 feet to El. 543.4 feet, with an average elevation of about El. 560.1 feet.

Groundwater levels measured in the groundwater observation wells (B-6, B-24 and B-48) ranged between depths of 0.6 feet, 8.2 feet and 2.4 feet bgs, respectively, during the site visit on April 1^{st} , 2014.

The soil and bedrock stratigraphy encountered and the groundwater conditions observed are described in more detail in the following sections and on the test boring logs presented in Appendix A. Also included, is a table (Table 2) summarizing the surface topsoil depths, the depths and bottom elevation of the man-placed fill, the depth and elevation of auger refusal (i.e. apparent bedrock refusal), and the groundwater observations made in the test borings and the wells installed for this investigation.

5.20 SURFACE MATERIALS AND FILL SOILS

The driller noted a distinct topsoil layer at the ground surface of most of the test borings, with the exception of test borings B-21, B-27 and B-38. The topsoil thickness typically ranged between about 2-inches and 14-inches, based on the driller's measurements and interpretation of topsoil. These measurements are widely spaced and are subject to interpretation. Therefore, these measurements should not be solely relied on for construction quantity estimates.

Beneath the topsoil and at the ground surface of the remaining test borings, man placed fill and/or disturbed or reworked indigenous soils were encountered at most of the test boring locations. The fill soils consisted of red-brown, brown-black and black clayey silt and silty clay soils with occasional zones or inclusions of organics, cinders and wood. The fill, where present, was typically found to extend to depths ranging between about 2 feet and 5 feet bgs.

Most of the fill soils are similar in character to the indigenous soils and appear were most likely placed during past site grading associated with the country club development. It can be expected that fill soils will also be present, and will extend to the bottom of the existing foundations near and adjacent to the existing building structures and amenities as well as to the bottom of previous excavations for existing utility lines within the site.

5.30 INDIGENOUS SOILS

The indigenous soil deposits encountered beneath the surface materials and fill consisted predominately of glacial till deposited silty clay, clayey silt, silt and silty or clayey sand soils, which also contain some intermixed gravel, apparent occasional cobbles/boulders and shale fragments. These indigenous soil deposits were found to extend to the top of bedrock. The indigenous soils are classified as CL, CH, ML, SM-SC and SM group soils using the Unified Soil Classification System (ASTM D2488).

Standard Penetration Test (SPT) "N" values obtained in the indigenous silty clay and clayey silt soils ranged from "woh - weight of hammer" (i.e. the sample spoon was advanced with only the weight of the drop hammer and drill rods applied statically to the sample spoon), to "REF – sample spoon refusal" (i.e. 50 blows to advance the split spoon with 6-inches or less of penetration). The SPT "N" values indicate the consistency of the fine grained cohesive clayey silt and silty clay soils vary from very soft to hard, while the relative density of the more granular silty sand soils and non-plastic silt soils vary from loose to very compact. Some limited zones of deeper soft to very soft clay soil deposits having SPT "N" values of less than 4 or "woh - weight of hammer" (i.e. the sample spoon was advanced with only the weight of the drop hammer and drill rods applied statically to the sample spoon), were encountered in only a few test borings (B-1, B-18, B-20 and B-25). Accordingly, significant deposits of soft to very soft clays, as present in other areas of northern of Amherst, are generally absent within this site. Some soft clay soils were also present in the upper reaches of a few of the test borings (B-8, B-9, B-11, B-19, and B-22).

5.40 BEDROCK

As discussed above, thirty (30) of the test borings were advanced through the overburden until auger refusal (presumed bedrock refusal) was encountered at depths ranging between about 13.5 feet (boring B-10) and 62.5 feet (boring B-1), with corresponding elevations ranging between approximately El. 586.9 feet to El. 543.4 feet. The borings, as well as the depth and elevation where auger refusal (presumed bedrock refusal) was encountered are summarized on Table 2. Within test borings B-7 and B-22 a zone of weathered Shale was encountered before reaching auger refusal.

Bedrock core samples were obtained from test borings B-1, B-4, B-29, B-31, B-43, B-45 and B-47 after reaching auger refusal. Five (5) feet of bedrock was cored at each of these locations. The bedrock core recovered consisted generally of gray, medium hard, sound, thinly bedded to bedded Shale Rock, with occasional partings, seams and layers of gypsum. Within test boring B-31, the recovered shale rock core was described as being partially slightly weathered and laminated.

The shale bedrock recovered is part of the Camillus Shale geologic formation. The core recoveries ranged between 100% and 50%. The rock quality designation (RQD) values ranged between 20% and 82% indicating the recovered rock cores have a varying rock mass quality ranging between "very poor" and "good".

5.50 GROUNDWATER CONDITIONS

Water level measurements were made in most of the test borings at the completion of overburden drilling and soil sampling. Freestanding water was encountered in borings B-1, B-4, B-5, B-9, B-14, B-20, B-21, B-25, B-26, B-29, B-36, B-37, B-40, B-43, B-45 and B-47 at depths ranging from 13.6 feet to 53.4 feet bgs. These water levels correspond to elevations ranging between El. 586.7 feet and El. 552.5 feet. Each of these borings were advanced to auger refusal (presumed bedrock refusal).

No freestanding water was recorded following the completion of overburden drilling and sampling, at the remaining test borings advanced to auger refusal or at the shallower test borings (i.e. test borings advanced to a depth of 18 to 22 feet and terminated). It is possible that in many cases within the deeper test borings, that groundwater may not have had sufficient time to accumulate and/or stabilize in the boring holes within the time that had elapsed from the completion of soil drilling operations and the time of the observations / measurements.

Following coring at boring locations B-4, B-43 and B-48, freestanding water was recorded at depths of 20.0 feet, 10.0 feet and 10.0 feet respectively below the existing ground surface. These depths correspond to elevations ranging between El. 581.5 feet and El. 583.2 feet. We note that water was added to these test borings to facilitate the rock coring. Water level measurements were not obtained at the completion of coring at the remaining rock core borings (B-1, B-29, B-31 and B-47).

A 2-inch diameter, PVC, groundwater observation well was installed in borings B-6 B-24 and B-48 following the completion of drilling. The wells installed at borings B-24 and B-48 extend to presumed top of bedrock (auger refusal) at depths of 41.3 feet and 31.0 feet, respectively. The well installed at boring B-6 is seated within the silty clay and clayey silt soils at a depth of 22.0 feet.

A geotechnical engineer visited the site on February 7th, February 17th, March 4th, and April 1st, 2014 to record the water level in the wells. The water level depths and corresponding elevations are as follows:

Groundwate	er Observation Well W	Vater Level Depths and	l Elevations
Boring / Well No.		Water Level Depth	Water Level El.
C	(feet)	(feet)	(feet)
February 7 th , 2014			
B-6	603.1	1.1	602.0
B-24	598.6	30.1	568.5
B-48	595.8	3.6	592.2
February 17 th , 2014			
B-6	603.1	2.1	601.0
B-24	598.6	13.1	585.5
B-48	595.8	4.5	591.3
March 4 th , 2014			
B-6	603.1	4.4	598.7
B-24	598.6	8.1	590.5
B-48	595.8	3.5	592.3
April 1 st , 2014			
B-6	603.1	0.6	602.5
B-24	598.6	8.2	590.4
B-48	595.8	2.4	593.4

The water levels observed and measured in the wells, particularly at boring locations B-6 and B-48, may in part be the result of wet surface conditions or perched water present in the upper soils. Based on the water levels obtained at the completion of coring in borings B-4, B-43 and B-48, as well as the readings obtained in borings B-9, B-20 and B-25 following completion soil sampling to auger refusal, and the level in well B-24 tends to suggest that a permanent groundwater table may be present at elevations in the range of about El 580 feet to El. 589 feet, although this is not confirmed by the other groundwater observation wells at this time. Continued monitoring of the water levels in the existing wells, particularly into the summer months, as well as the installation of additional wells is recommended to better confirm the depths / elevations of permanent groundwater conditions present on the site.

It also appears that zones of perched or trapped groundwater are present in the topsoil and fill soils at or near the ground surface, at various locations on the site, due to the relatively low permeability of the underlying soils present, and depending on site drainage conditions. Such conditions were observed during the subsurface exploration where areas of standing water and spongy surface conditions were present, hindering some of the drill rig access. These conditions can be particularly

more prevalent following heavy or extended periods of precipitation and during seasonally wet periods, and therefore should be anticipated with the new development site preparation. The clayey and silty fill and indigenous soils encountered are considered to be poor draining soils.

6.00 LABORATORY TEST RESULTS

6.10 SHRINKAGE / SWELL POTENTIAL OF CLAY SOILS

A total of thirteen (13) silty clay / clayey silt soil samples, obtained at various locations and depths as summarized on Table 1, were evaluated qualitatively for shrinkage potential using soil shrinkage and moisture content index test data from the laboratory testing program.

The range of moisture content, liquid limit, plastic limit, plasticity index and shrinkage limit of the clay type soil samples tested, were as follows:

Index Property	Range
Moisture Content	10.7 % to 28.1 %
Liquid Limit	20 % to 61 %
Plastic Limit	12 % to 25 %
Plasticity Index	8 to 37
Shrinkage Limit	12 % to 23 %

The plasticity indices indicate the clay soils vary between a low and high plasticity. Based on the moisture contents and the shrinkage test data, the COLE factors determined ranged from 0 to 0.034.

The laboratory test data and COLE factors calculated suggest that the silty clay soils encountered within the upper reaches of the site below the immediate surface soils, (i.e. within the anticipated depths of proposed spread foundations) are partially desiccated and have a generally non-existent to low potential susceptibility to shrinkage. Therefore, spread foundation settlement should generally be limited to normal consolidation settlement as a result of the compressive structural loads.

The following conditions were noted to support these conclusions.

1. The moisture content of the clay soil samples tested were either lower or just slightly above their shrinkage limit.

2. The COLE factors determined generally ranged from 0 to 0.025, with one sample slightly greater at 0.034.

COLE factors of 0 correlate to a non-existent shrinkage potential. COLE factors between 0 and 0.03 correlate to a low shrinkage potential. COLE factors of 0.03 to 0.06 correlate to a moderate shrinkage potential and COLE factors of about 0.06 and greater correlate to a high to very high shrinkage potential.

With regard to potential swelling, the clay soils would have to be in a loose condition and be inundated with water for long periods to cause saturation and potential swelling. Given the relatively medium stiff to hard nature of the indigenous clay soils and their inherent low permeability it is unlikely saturation and potential swelling of these soils would occur in an undisturbed state. We note, however the upper surficial clayey silt /silty clay fill soils are in a less dense condition and may be more susceptible to potential shrinkage and swelling, where they are inundated with poor draining surface water.

In addition, drying and re-wetting cycles occurring in clayey fill soils, if used to backfill the foundation walls, could result in soil swelling/shrinkage cycles that can exert additional lateral pressures acting on earth retaining foundation walls. Such action may cause cracking and distortion of the walls if not properly accounted for. Accordingly, to reduce risks associated with the potential for soil expansion and minimize the potential for additional lateral earth pressures to act on the walls, the backfill against any earth retaining structures (i.e. basement foundation walls, depressed crawl space walls, pit structures, etc,) should consist of a suitable nonplastic soil such as a granular sand and gravel backfill material or a crusher run stone Structural Fill material.

6.20 SOIL CORROSION AND SULFATE ATTACK POTENTIAL

Three (3) composite soil samples were prepared from the samples obtained from the upper reaches of test boring locations B-6, B-34 and B-45. The composite samples were tested for resistivity, redox, pH, and sulfides according to procedures established by the Ductile Iron Pipe Research Association (DIPRA). These samples were also tested for chlorides and sulfates.

This analytical laboratory test data is included in Appendix B and is also summarized in the following tables.

		Summar	y of DIPI	RA Tes	st Results		
Test Boring	Sample Depth (feet bgs)	Resistivity (ohm-cm)	Redox (mv)	ph	Sulfides	Moisture (%)	Total DIPRA Points
B-6	2 to 8	15,000	-35.2	7.0	Negative	9.5	6
B-34	2 to 10	11,500	-22.6	6.4	Negative	8.9	6
B-45	2 to 10	2,700	9.0	7.6	Negative	23.9	7

Based on the DIPRA publication "American National Standard for Polyethylene Encasement for Ductile Iron Pipe Systems", if the total DIPRA points exceed 10, the soil is considered corrosive to ductile iron pipe, and protection against exterior corrosion should be provided.

Based on the test results, the site soils tested appear to have a low corrosion potential to ductile iron waterline pipes and other buried metallic pipes/elements. Accordingly, cathodic protection or a suitable protective coating of metallic pipes and conduits, to resist potential corrosion, does not appear necessary.

	Summary of Chlori	de and Sulfate Test	Results
Test Boring	Sample Depth (feet bgs)	Chloride (mg/kg)	Sulfate (mg/kg)
B-6	2 to 8	15	N.D.
B-34	2 to 10	10	N.D.
B-45	2 to 10	18	N.D.

N.D. – Non Detectable within test parameters.

Based on the sulfate concentrations, the soils, which make up these samples, are considered to have a negligible potential for sulfate exposure. Accordingly, a Type I-II Portland Cement appears will be acceptable for the concrete structure elements placed in these soils.

Refer to the laboratory test data included in Appendix B for more information.

7.00 PRELIMINARY GEOTECHNICAL CONSIDERATIONS AND RECOMMENDATIONS FOR SITE DEVELOPMENT

7.10 GENERAL CONSIDERATIONS

The following general considerations and recommendations are provided to assist with the permitting, planning and preliminary design for the proposed mixed use redevelopment project being considered on the site of the Westwood Country Club. This information is based on the recently completed geotechnical investigation, which included 49 test borings completed across the site to characterize the soil and bedrock conditions present, groundwater observations during drilling and from 3 installed wells to assess groundwater conditions present on the site, and laboratory testing to further characterize soil conditions. Additional investigations and further evaluations will be necessary, as discussed below, for final design once final building development plans and loading conditions, along with final site development plans, are established.

Topsoil, along with underlying man-placed fill or disturbed indigenous soils, were encountered at the surface of most of the test boring locations. The topsoil thickness typically ranged between about 2-inches and 14-inches, based on the driller's measurements and interpretation of topsoil. The fill, where present, was typically found to extend to depths ranging between about 2 feet and 5 feet bgs.

The indigenous soils encountered consist predominately of medium stiff to hard silty clay and clayey silt and firm to very compact silty or clayey sand deposits with some intermixed gravel, and occasional cobbles/boulders and shale fragments. These soils are non-organic, and are not considered to be highly compressible, nor highly susceptible to shrinkage, swelling, or liquefaction. Significant deposits of highly moist, soft to very soft clays, as present in other areas of northern Amherst and which have been problematic to residential foundation/structure movement and distress (i.e. basement foundation subsidence / settlement and lateral movement), appear to be generally absent within this site.

Accordingly, the indigenous soil conditions encountered in the test borings are generally considered suitable to support the anticipated residential and mixed use structure loads using conventional spread foundation systems. Spread foundations and any underlying Engineered Fill (i.e. compacted Structural Fill or suitable flowable backfill material), however, will need to bear on suitable indigenous soil subgrades established below the upper existing man-placed fill and disturbed indigenous soils.

In a few cases (i.e. within borings B-9, B-11, B-19, B-21, B-22 and B-45) some limited zones of weaker soils were encountered which may impact the use of spread foundations from a structure bearing capacity and settlement stand point, particularly if a multiple-story more heavily loaded building structure would be proposed at or near these locations. Accordingly, these conditions possibly may require consideration of deep foundations (i.e. driven piles) for multiple-story more heavily loaded building structures at or near these locations.

The existing fill and indigenous soil subgrades are also considered to be generally suitable for basement, at-grade and garage slab-on-grade floor construction, with proper site preparation. The soils encountered are also considered generally suitable for construction of the proposed infrastructure, including the roadways, parking lots, storm and sanitary sewers, waterlines and retention pond structures.

Based on the water level observations made in the test borings, as well as in the groundwater observation wells, it appears that a permanent general groundwater zone (i.e. groundwater table) should generally not be encountered within the excavations for shallow spread foundations and shallow utility construction. The groundwater observations made during drilling and in well B-24 suggest that a permanent groundwater table may be present at elevations in the range of about El 580 feet to El. 589 feet, although this was not confirmed by all of the groundwater observation wells at this time.

Zones of perched or trapped groundwater are also present in the topsoil and upper fill soils at or near the ground surface, at various locations on the site, due to the relatively low permeability of the underlying soils present, and poor site drainage conditions. These conditions therefore will make site stripping and subgrade preparation difficult, particularly during wet periods.

Given, the relatively low to medium low permeability of the soils present, both permanent and perched groundwater seepage if encountered should be relatively slow and of low quantities. Accordingly, these conditions should not significantly impact basement and utility construction. It is anticipated that conventional sump and pump methods of dewatering should generally be sufficient to control surface water, as well as permanent and perched groundwater seepage conditions, should they be encountered. Based on the subsurface conditions encountered, the overall site should be classified as Seismic Site Class "D" in accordance with Table 1613.5.2 of the Building Code of New York State - December 2010 (NYS Building Code). As previously stated, the soil conditions encountered are not considered to be susceptible to potential liquefaction in the case of a seismic event. Therefore, seismic design may be based on these criteria.

The following sections present additional and more detailed geotechnical considerations and recommendations to assist with permitting, planning, and preliminary design of the proposed site redevelopment project.

7.20 FOUNDATION SUPPORT

As stated above, the indigenous soil conditions encountered in the test borings are generally considered suitable to support the anticipated residential and mixed use structures using conventional spread foundation systems. Preliminarily, it is expected that spread foundations can be sized, based on net allowable bearing capacities in the range of about 2,000 to 4,000 pounds per square foot (psf) \pm , depending on location, foundation bearing depths and actual structure loads.

Spread foundations should bear on suitable, undisturbed, indigenous soil bearing grades, after the removal of all fill soils and any unsuitable indigenous soft or wet soils. Alternatively, the foundations may also bear on Engineered Fill (i.e. compacted Structural Fill or flowable backfill), which is placed over the suitable indigenous soil bearing grades, following excavation and removal of fill soils and any unsuitable indigenous soils which are present below the design bearing grade elevation of the footings.

Suitable indigenous soil bearing subgrades should consist of stiff to hard silty clay and clayey silt soils or firm to very compact silty or clayey sand soils. Suitable bearing subgrade conditions were typically encountered in the test borings at depths ranging between about 2 feet and 5 feet bgs. At boring locations B-19 and B-22 suitable bearing subgrade conditions were deeper at about 10 feet and 6.5 feet, respectively.

In a few cases (i.e. within borings B-9, B-11, B-19, B-21, B-22 and B-45) zones of weaker soils were encountered which may impact the use of spread foundations. Accordingly, these conditions possibly may require consideration of a deep foundation system; particularly if multiple-story more heavily loaded building structures would be proposed at or near these locations.

Driven H-piles or pipe piles driven to refusal on the Shale bedrock appear would be the best suited deep foundation system option for the site conditions present. Zones of gypsum present in the Shale bedrock may require socketting of drilled piers in the bedrock in order to bear the piers on suitable bedrock below these zones. Therefore, it appears the use of drilled piers would be less favorable from both a constructability and economic standpoint.

For preliminary information, a driven HP12x53 H-pile, driven to refusal on the bedrock, would be expected to develop an axial compressive capacity in the range of about 100 to 120 tons \pm per pile. Other pile sections can also be used, based on product availability and costs, which would provide higher or lower allowable axial capacities, based on the actual pile section.

7.30 BASEMENT STRUCTURE DESIGN CONSIDERATIONS

Basement structures should be designed for lateral earth pressures caused by the load of backfill against the wall and the surcharge effects from any permanent or temporary loads. In addition suitable foundation drainage should be provided to relieve potential hydrostatic pressure from developing against the basement walls and floors due to the possible presence of groundwater. In this case suitable damp proofing of the walls and floors should also be provided. Alternatively, the basement structures could also be designed to resist potential full hydrostatic pressure. In such case the basement structure should also be fully water proofed.

Where suitable foundation drainage is provided, the basement walls can be designed for "at rest" lateral earth pressure computed on the basis of an "equivalent fluid unit weight" of 70 pounds per cubic foot (pcf). This is based on the assumption that the wall backfill beyond the drainage system is a suitable well draining granular backfill material, such as a crusher run stone Structural Fill.

The use of the on-site clayey silt, silty clay and silty or clayey sand soils to backfill the basement walls is not recommended as they will be susceptible to potential swelling in a looser disturbed state, which could cause additional lateral pressures on the basement walls. The on-site soils could be used, however, to backfill nonearth retaining foundation walls provided they can be properly placed and compacted to a stable and well engineered condition.

The foundation drainage system should be properly designed, installed and maintained for long-term performance and should drain to a sump and pump system or a gravity drain relief point, which is not susceptible to potential backup.

The foundation drainage system should include a drainage/separation geotextile installed around drainage stone, which surrounds a slotted under-drain pipe. The drainage stone should be sized in accordance with the pipe slotting. A crushed aggregate conforming to NYSDOT Standard Specifications Section 703-02, Size Designation No. 1 (½-inch washed gravel or stone) is generally acceptable for slotted under-drain pipe. The foundation under-drain pipes should be set at a depth of about 1 foot below the top of the finish basement floor grade.

A pervious granular backfill (i.e. concrete sand or crusher run stone) or a suitable geosynthetic drainage composite (i.e. Miradrain, Grace Hydroduct, Delta MS, etc.) should be placed against the basement foundation wall, above the drainage system, to allow infiltration to the drainage system.

7.40 SLAB-ON-GRADE FLOOR CONSTRUCTION

The building floors can be constructed as slab-on-grade following proper subgrade preparation as outlined in Section 7.80. For preliminary design purposes, a minimum of 6-inches of Subbase Stone is recommended beneath the lightly loaded floor slabs (residential floors, lightly loaded office floors, etc.). A minimum 12-inch thick layer of Subbase Stone is recommended beneath more heavily loaded floor slabs (i.e. garage areas, storage areas, mechanical rooms, etc.). A suitable stabilization/separation geotextile, such as Mirafi 500X, should be placed over the existing soil or fill soil subgrades prior to placement of the Subbase Stone layer.

An imported suitable granular fill material is generally recommended to be used as subgrade fill to raise the site grades, beneath the Subbase Stone course for the slabon-grade construction. The use of the soils from the site may be possible for the building pad site filling, provided the soil can be properly placed and compacted in a controlled manner, as discussed further in Section 7.80 below.

In order to limit potential post construction settlement, due to required site filling, we recommend the subgrade fill placement, in areas requiring more than about 2 to 3 feet of fill, be completed at least 1 to 2 months month in advance of the final subgrade preparation, Subbase Stone placement, and floor slab construction.

Preliminarily, the slab-on-grade floor slabs may be designed using a modulus of subgrade reaction of 150 pounds per cubic inch (pci) at the top of the subbase layer. It is recommended that the slab-on-grade be constructed such that it is not structurally connected to, or resting directly on, perimeter walls or column footings in order to limit differential settlement effects.

The above subbase stone thicknesses should not be considered sufficient for carrying construction vehicle loads. Therefore, contingencies should be planned for to temporarily increase the Subbase Stone thickness within the building pad areas to provide a suitable working surfaces to stage the construction, carry construction vehicle loads and protect the underlying subgrades. This will be particularly important when wet periods occur. The additional subbase stone material could then be removed and re-graded in preparation for the actual floor construction and/or re-used as foundation backfill or as pavement area subbase or as otherwise determined appropriate.

A moisture barrier is generally not considered warranted where the floor slabs are constructed at or above the final site grades, unless otherwise recommended by the finished flooring manufacturer. A suitable moisture barrier, however, is recommended beneath the below grade floor areas (i.e. basement areas) to reduce the potential for dampness.

7.50 SEISMIC DESIGN CONSIDERATIONS

Based on the subsurface conditions encountered in the test borings, the upper 100 feet of the site should be classified as Seismic Site Class "D" in accordance with the criteria presented on Table 1613.5.2 of the Building Code of New York State - December 2010 (NYS Building Code). The soil conditions encountered are generally not considered to be susceptible to potential liquefaction in the case of a seismic event. Therefore, seismic design may proceed based on these considerations.

The spectral response accelerations in the project area were obtained by Empire using the United States Geological Survey (USGS) web site application (<u>https://geohazards.usgs.gov/secure/designmaps/us/</u>). These accelerations were then adjusted, as recommended by the USGS, to obtain the 2% probability in 50 years mapping accelerations, as presented in the NYS Building Code.

Using the site location, the calculated spectral response accelerations for Site Class "B" soils are 0.221g for the short period (0.2 second) response (S_S) and 0.051g for the one second response These spectral response accelerations were then adjusted for the Seismic Site Class "D" soil profile determined for the project site.

Accordingly, the adjusted spectral response accelerations for Site Class "D" are as follows:

- Short Period Response (S_{MS}) 0.354g
- 1 Second Period Response (S_{M1}) 0.122g

The corresponding five percent damped design spectral response accelerations (S_{DS} and S_{D1}) are as follows:

- S_{DS} 0.236g
- S_{D1} 0.081g

It is possible that a seismic shear wave velocity study of the site may refine and possibly upgrade the seismic design site class. This may be particularly beneficial in the areas of the mixed use commercial and apartment buildings depending on the costs associated with seismic reinforcement of these structures. It should be understood, however, that there is no guarantee that an upgrade can be made if a seismic shear wave study is performed,

7.60 PAVEMENT DESIGN CONSIDERATIONS

The Town of Amherst requires a typical pavement section consisting of the following components for residential and commercial development roadways:

Town of Amherst Asphalt Concrete Pavement Section:

- 1.5 inches Top Course
- 2.5 inches Binder Course
- 4.0 inches Base Course
- 11 inches Subbase Stone Course

It is estimated that the existing subgrade soils will have a typical CBR value of about 2 to $3 \pm$. This correlates to a soil resilient modulus of about 3,500 psi, which has been used for our pavement design evaluations. The pavement sections were analyzed using the NYSDOT Thickness Design Manual for New and Reconstructed Pavement, along with the American Association of State Highway and Transportation Officials (AASHTO) "Interim Guide Method for Design of Flexible Pavements".

Based on our analyses, the Town of Amherst pavement section will provide approximately 1.2 million, 18-kip equivalent axle loads (EAL's) over its design life, provided the subgrades are prepared in accordance with the recommendations presented in Section 7.80. This design life is considered to be within an acceptable range for this type of application.

We would recommend, however, the Town of Amherst pavement section also include a suitable stabilization/separation geotextile (i.e. Mirafi 600X or suitable equivalent). It may also be necessary to increase the subbase thickness in some areas to improve subgrade conditions in some areas, as well as to promote drainage to underdrains, etc. as discussed below.

Pavement design recommendations are also provided for two (2) flexible pavement structure types within the proposed mixed use development areas. These include the following:

- A heavy duty asphalt concrete pavement for the entrance, access drives and pavement areas, which will be subject to delivery truck traffic. (Heavy Duty Asphalt Concrete Pavement Structure); and
- A light duty asphalt concrete pavement for automobile / light SUV only parking areas (Light Duty Asphalt Concrete Pavement Structure).

Heavy Duty Asphalt Concrete Pavement:

- 1.5 inches Top Course
- 3.0 inches Binder Course
- 15 inches Subbase Stone Course
- Stabilization/Separation Geotextile
- Prepared Subgrade

Light Duty Asphalt Concrete Pavement:

- 1.5 inches Top Course
- 2.0 inches Binder Course
- 10 inches Subbase Stone Course
- Stabilization/Separation Geotextile
- Prepared Subgrade

Based on our analyses, the Heavy Duty and Light Duty pavement sections will provide approximately 350,000 and 45,000 18-kip equivalent axle loads (EAL's), respectively, over their design life.

The installation of underdrains and/or edge drains is recommended to drain the pavement subbase course and subgrades in order to limit the potential for frost action and improve pavement structure performance and design life. Alternatively, the pavement subbase course can also be allowed to daylight/drain to an adjacent perimeter drainage swale.

Proper grading of the pavement structure subgrades is also recommended Accumulation of water on pavement subgrades should be avoided by grading the subgrade to a slope of at least 2 percent to allow drainage to the underdrains or drainage swale.

The subbase stone course for the above pavement sections should not be considered sufficient for use as construction haul roads. Therefore, contingencies should be planned for to temporarily increase the Subbase Stone thickness or provide additional base stabilization / reinforcement within the areas that will be used as construction roads and to stage the construction.

7.70 UNDERGROUND UTILITY CONSTRUCTION

The generally medium stiff to hard clayey silt and silty clay and firm to very compact silty or clayey soils should provide generally suitable subgrade conditions for underground utility construction, including storm and sanitary sewers, water lines, gas lines and buried electrical / communication conduits. Accordingly, standard bedding materials and thicknesses can generally be used to support this infrastructure. It should be expected, however, that in some localized cases that subgrade undercuts and the placement of additional bedding material or subgrade stabilizing materials may be required to provide suitable and stable subgrades for the utility construction. Therefore, some contingencies should be planned for, should such localized conditions be encountered.

7.80 SUBGRADE PREPARATION FOR PAVEMENT AND SLAB-ON-GRADE CONSTRUCTION

The site preparation work should be performed during seasonal dry periods to minimize potential degradation of the subgrade soils and potential undercuts which may be required to establish a stable base for construction. It should be understood that the indigenous subgrade soils that will be exposed are sensitive and will degrade and lose strength when they are wet and disturbed by construction equipment traffic. Accordingly, efforts should be made to maintain the subgrades in a dry and stable condition at all times, and not permit excessive or heavy construction traffic directly over these soils. It is noted that zones of perched or trapped groundwater are present in the topsoil and upper fill soils at or near the ground surface, at various locations on the site, due to the relatively low permeability of the underlying soils and poor site drainage conditions present. Such conditions occurred during the subsurface exploration where areas of standing water and spongy surface conditions were present, hindering some of the drill rig access, until the site became frozen in the later part of January and early February. These conditions therefore will make site stripping and subgrade preparation difficult, particularly during wet periods, and therefore should be anticipated.

Measures to improve site drainage should be implemented as necessary prior to commencing the site stripping and subgrade preparation work. Such measures, may include installation of drainage swales to intercept and divert surface runoff away from the construction areas, sloping of the subgrade and "sealing" of the surface with a smooth drum roller to promote runoff, and restricting construction equipment traffic from traveling directly over the subgrade surfaces, especially when they are wet. The placement of a suitable base material and underlying stabilization geotextile, beneath haul roads, and in construction staging areas, will help to protect the subgrades and minimize problems associated with subgrade degradation.

All existing structures, trees, stumps, vegetation, topsoil, organic soils, etc., and any other deleterious materials within the proposed building pad areas and pavement areas should be removed. Following stripping and removal of the surface materials (i.e. topsoil, asphalt pavement, concrete pads and structures, etc.), the exposed subgrades should be proof-rolled. The proof-rolling should be performed, prior to the overlying fill placement, using a smooth drum roller weighing at least 10 tons.

The subgrade proof-rolling should be done under the guidance of, and observed by qualified geotechnical engineering personnel. In some cases it may be necessary to waive the proof-rolling requirement if wet subgrades are present. This should be determined by the geotechnical engineer (i.e. Empire). Any undercuts, which may be required as the result of the proof-rolling, should be performed based on guidance and evaluation of the conditions by the geotechnical engineer. Resulting undercuts should be backfilled with a suitable material as recommended by the geotechnical engineer.

The placement of an initial lift of suitable oversized stone fill material (i.e. "surge stone", "shot rock", minus 6-inch crusher run stone, No.3 & No.4 Stone, etc.) encased in stabilization geotextile top and bottom, may be necessary in some cases

to help stabilize the subgrades prior to the subgrade fill placement, particularly if the existing subgrades are in a soft/wet condition.

The subgrade fill placement necessary to raise the site grades may proceed following preparation and acceptance of the existing soil subgrades.

The majority of the site filling and grading necessary to raise site grades should be performed sufficiently in advance of the foundation, pavement and utility construction. Therefore we recommend the subgrade fill placement, in areas requiring more than about 2 to 3 feet of fill, be completed at least 1 to 2 months in advance of the final subgrade preparation and subbase stone placement for floor slab and pavement construction.

The on-site soils could be used for constructing the fills for establishing the building pad and pavement areas, provided they can be properly placed and compacted in a controlled manner and to a stable well engineered condition, in accordance with our recommendations. It should be understood, however, that these soils will be very difficult to dry and work with. Therefore the use of imported granular fill materials will be better suited for building pad, roadway and parking lot fill areas. On-site soils used for filling within the building pad area and pavement areas must be free of all organics, and any soft, wet or otherwise deleterious material.

As stated above, the use of the fine grained on-site soils for site filling will be difficult to work with (i.e. dry for proper compaction), vs. an imported Suitable Granular Fill or Structural Fill material, particularly during seasonally inclement or wet weather. Efforts should be made to maintain the subgrades in a dry and stable condition at all times, and limit construction traffic directly over these soils, particularly if they become wet.

Subgrade fill placed to establish the building pad, roadway and parking lot areas, using the on-site soil material, should be compacted to a minimum of 95 percent of the maximum dry density as measured by the modified Proctor moisture-density relationship (ASTM D 1557). The subgrade fill should be placed in horizontal lifts that do not exceed a maximum loose lift thickness of 6 to 9 inches. The loose lift thickness should be reduced in conjunction with the compaction equipment used so that the required density is attained. On-site soil used for subgrade fill should have a moisture content within -3 % to +1 % of the optimum moisture content (determined by ASTM D 1557) when it is placed and compacted. On-site soils having moisture contents exceeding this range will require drying efforts to be implemented by the contractor.

The subgrade fill should be placed to a stable condition and should not "pump" or show signs of movement or significant deflection (i.e. unstable conditions) as it is being constructed. Any unsuitable conditions should be undercut and removed. The fill subgrades should also be properly graded, drained and protected from moisture and frost. Placement of fill over wet, soft, snow covered or frozen subgrades should not be permitted.

Suitable Granular Fill or Structural Fill as described below in Section 7.90, or other imported suitable granular soil materials are recommended as better suited for subgrade fill to raise the existing site grades for slab-on-grade and pavement construction. Empire, however, should be consulted regarding the acceptability of any off-site materials, which do not meet the requirements stated below for Suitable Granular Fill or Structural Fill. All fill placement and compaction should be closely monitored and tested on a "full-time" basis by qualified geotechnical engineering personnel.

7.90 STRUCTURAL FILL AND SUITABLE GRANULAR FILL MATERIALS

Structural Fill Material

Structural Fill (Subbase Stone) should consist of crusher run stone, which is free of clay, organics and friable or deleterious particles. The crusher stone should meet the requirements of New York State Department of Transportation, Standard Specifications, Item 304.12 – Type 2 Subbase, with the following gradation requirements.

Sieve Size	Percent Finer
Distribution	by Weight
2 inch	100
¹ / ₄ inch	25-60
No. 40	5-40
No. 200	0-10

Suitable Granular Fill

Suitable Granukar Fill should be <u>well graded from coarse to fine</u> and classified as GW, GP, GM, SW, SP and SM soils using the Unified Soil Classification System (ASTM D-2487). It should have no more than 85- percent by weight material passing the No. 4 sieve, no more than 20- percent by weight material passing the No. 200 sieve and should be generally free of particles greater than 4-inches. It should also be

free of topsoil, asphalt, concrete rubble, wood, debris, clay and other deleterious materials.

Material meeting the requirements of New York State Department of Transportation, Standard Specifications, Item 203.07 – Select Granular Fill is acceptable for use as Suitable Granular Fill.

Placement and Compaction

Structural Fill and Suitable Granular Fill should be compacted to a minimum of 95 percent of the maximum dry density as measured by the modified Proctor test (ASTM D1557). Placement of the fill should not exceed a maximum loose lift thickness of 6 to 9 inches, with the exception of the subbase course beneath the slab-on-grade and pavement construction, which can be placed in a single lift not exceeding 15-inches. It may be necessary to reduce the loose lift thickness depending on the type of compaction equipment used so that the required density is attained. The fill should have a moisture content within two percent of the optimum moisture content at the time of compaction.

8.00 RECOMMENDATIONS FOR ADDITIONAL GEOTECHNICAL INVESTIGATIONS

As discussed above, it is recommended that additional explorations be completed for final site redevelopment design particularly in the mixed use town center and future senior housing building development areas

Preliminarily we would recommend that additional test borings in the mixed use town center and senior housing building development areas be performed to provide an approximate frequency of at least one (1) boring per about 3,000 to 4,000 square feet of building footprint, with no less than 4 borings per building. The recommended depth of these borings will be dependent on the building structure loads and foundation bearing depths. At least half of these borings, however, should be extended to bedrock, if a deep foundation system appears may be warranted.

Additional borings within the proposed residential areas should be made to provide a frequency of about one (1) boring per 4 to 5 residential units, with these borings extending to a depth of about 20 feet \pm . Additional borings along the proposed roadway and parking lot areas should be made to provide a frequency of about one (1) boring per 400 linear feet of road and/or about one (1) boring per about 10,000 square feet of parking lot area. The roadway borings should extend at least 5 feet

beneath the anticipated utility inverts and the parking lot area borings should extend to a depth of about 6 feet.

Empire can be consulted to assist in planning the locations and scope of the additional explorations and evaluations that may be necessary for final design, based on the final development plans, building sizes and loads.

9.00 CONCLUDING REMARKS

This report was prepared to assist in evaluating the geotechnical characteristics of the subsurface conditions present at the Westwood Country Club site in Amherst, New York, with regard to the proposed mixed use redevelopment project being considered on the site. The report has been prepared for the exclusive use of Mensch Capital Partners, LLC and related parties, for specific application to this site and this project only.

The considerations and preliminary recommendations presented were prepared based on Empire Geo-Services, Inc.'s understanding of the proposed site redevelopment, as described herein, and through the application of generally accepted soils and foundation engineering practices. No warranties, expressed or implied are made by the conclusions, opinions, recommendations or services provided.

This report was prepared for site characterization and preliminary site development planning purposes only. It should not be considered as providing complete or sufficient subsurface information for final building foundation design and construction. Additional subsurface explorations and geotechnical engineering evaluations will be necessary based on the actual planned site development, including the building sizes, location, use and structural loads.

Additional information regarding the use and interpretation of this report is presented in Appendix D.

Sincerely,

EMPIRE GEQ-SERVICES, INC.

John J. Danzer, P.E. Senior Geotechnical Engineer

Page 29 of 29

TABLES

TABLE 1

SUMMARY OF LABORATORY INDEX TESTS

PROPOSED WESTWOOD COUNTRY CLUB DEVELOPMENT PROJECT NORTH FOREST ROAD AMHERST, NEW YORK

	USCS Group Soil	OI / MI	CL / ML	CL	СГ	<u></u>	C L	CL	CL	Ξ	5	ML	CL		ML	CL	CL	СН	CH	c	CL				ML / CL	CL	\square
	Soil Description		Ked-Brown Slity Clay / Clayey Slit, some Sand, trace gravel	Red-Brown Silty Clay, little Sand, trace gravel	Brown-Gray, Silty Clay, little Sand, Trace gravel	Dod Drown Cither Clove come Sond trend and		Red-Brown Silty Clay, some Sand, trace gravel	Red-Brown Silty Clay, trace sand	Dod Brown Silty Mov trans cand		Red-Brown Clayey Silt, some Sand, trace gravel	Orange-Brown Silty Clay, some Sand, trace gravel		Red-Brown Clayey Silt, some Sand, little Gravel	Brown Silty Clay, trace sand	Red-Brown Silty Clay, little Sand, trace gravel	Red-Brown Silty Clay, trace sand	Red-Brown Silty Clay, trace sand	Dod Desirie Olis, Clov Hills areas areas			Dod Drown Silty (Toy 1940 Sand trace ground		Red-Brown Silty Clay, little Sand, trace gravel	Red-Brown Silty Clay, trace sand	
	Shrinkage Potential		LOW	Low	Non - Existent	1000	LOW	Non-Existent	Low	m	LOW		Non-Existent			Low	Non-Existent	Non-Existent	Low-Medium	Non Eviatont	INUII-EXISIGII	Chlorides / Sulfates (ppm)			10 / ND	18 / ND	
	COLE Factor	1100	0.015	0.010	0		600.0	0	0.025	0.018	0.0.0		0			0.008	0	0	0.034	c	5	DIPRA Points	u	D	6	7	
	Shrinkage Limit (%)	0	12	13	13	5	7	17	19	22	04		12			20	13	22	22	11	4						
Limits	Plasticity Index	c	x	11	12	11	=	11	20	50	00		10			24	11	37	36	10	0						
Atterberg Limits	Plastic Limit (%)	10	12	13	12	c†	2	12	17		77		13	-		20	14	22	25	c7	2						
	Liquid Limit (%)	00		24	24	10	74	23	37	ĘЭ	74		23			44	25	59	61		62						·
tion	Silt & Clay (%)	010	97.79	83.2	74.3	60.7	7.00	70.1	0.06	00.0	7.66	72.8	69.3		58.8	96.2	83	97.8	99.2	1 11	1.11		20.2	1 3.0	81.5	93.8	
Grain Size Distribution	Sand (%)	010	21.0	14.8	17.4	C CC	20.2	22.0	1.0	α	0.0	22	21.6		29.4	3.8	14.8	2.2	0.8	101	13.1		110	-4.9	10.7	1.7	
Grain	Gravel (%)		2.C	2.0	8.3	20	0.0	7.9	0.0		0.0	4.3	9.1	-	11.8	0.0	2.2	0.0	0.0	0 C	0.0		0 1	0.0	7.8	4.5	
	Moisture Content (%)		14.6	14.8	12.6	1 01		10.7	23.3	76 E	0.02	11.4	10.7		8.7	21.3	12.0	21.3	28.1	11 0	0.11		1 E to 11 0	0.11.010.4	5.9 to 12.0	20.2 to 28.6	
	Sample Depth	0 1	4 6.	6' - 8'	10' - 12'	1 5		6' - 8'	10' - 12'	1 - E	5	8' - 10'	10' - 12'	i	15' - 17'	2' - 4'	6' - 8'	4' - 6'	4' - 6'	0 101	01 - 0	LES	ia ic	0-7	2' - 10'	2' - 10'	Н
	Sample Number		ю-2	S-4	S-6	с <i>о</i>	2	S-4	S-5	0.2	2	S-5	S-6		S-7	S-2	S-4	S-3	S-3	u o	0-0	COMPOSITE SAMPLES	C 2 40 C 4	4-0 01 Z-0	S-2 to S-5	S-2 to S-5	
	Test Boring Number	2	с-1	B-3	B-7	0 10	4	B-14	B-20	B-00	0-24	B-30	B-31	1	B-35	B-38	B-40	B-44	B-46	D 40	D-40	COMF	y d	0-0	B-34	B-45	Ť

April 24, 2014 Project No.: BE-13-192

TABLE 2 (SHEET 1 OF 3)

SUMMARY OF SUBSURFACE CONDITIONS

PROPOSED WESTWOOD COUNTRY CLUB DEVELOPMENT PROJECT NORTH FOREST ROAD AMHERST, NEW YORK

Boring Number	Ground Surface EI. (feet)	Total Boring Depth (feet)	Surface Material	Fill Depth (feet)	Bottom of Fill EI. (feet)	Auger Refusal Depth (feet)	Auger Refusal EI. (feet)	Depth of Freestanding Water in Boring (feet)	El. of Freestanding Water in Boring (feet)	Depth to Groundwater in Well (feet)	El. of Groundwater in Well (feet)
Ţ		L LV	Taxaal	c		1.00	140.4	V CL	LCLL		
- è	000.9	C. 10	I Opsoli	7:0	003.9	C.20	043.4	53.4	C.70C		
B-2	603.7	20.0	12" - Topsoil	2.0	601.7	N.E.	N.E.	N.E.	N.E.		
0		0	:	(L 2	1	1	1		
B-3	603.1	20.0	12" - Topsoil	2.0	601.1	N.E.	N.E.	N.E.	N.E.		
B-4	601.5	53.5	3" - Topsoil	2.0	599.5	48.5	553.0	47.0	554.5		
B-5	603.2	32.7	2" - Topsoil	2.0	601.2	32.7	570.5	16.5	586.7		
			-								
B-6 w/Well	603.1	22.0	14" - Topsoil	2.0	601.1	Э.Е.	Ч. Ч.	N.E.	N.E.	0.6	602.5
B-7	603.0	47.6	8" - Topsoil	N.E.	N.E.	47.6	555.4	N.E.	N.E		
B-8	602.8	47.5	2" - Topsoil	N.E.	N.E.	47.5	555.3	N.E.	N.E.		
		0 1 1	o" Tonnoil	Ċc		044	EEO A	0 66	E80.4		
2-9	002.4	0.44	illosdo i - c	0.2	000.4	44.O	4.000	0.77	300.4		
B-10 / 10A	600.4	13.5	3" - Topsoil	2.0	598.4	13.5	586.9	N.E.	N.E.		
B-11	601.7	45.7	4" - Topsoil	2.0	599.7	45.7	556.0	Ä	ц		
B-12	599.1	20.0	4" - Topsoil	N.E.	N.E.	N.E.	N.E.	N.E.	N.E.		
B-13	599.1	21.0	10" - Topsoil	2.0	597.1	N.E.	N.E.	N.E.	N.E.		
			-								
B-14	602.9	47.7	10" - Topsoil	2.0	600.9	47.7	555.2	38.2	564.7		
B-15	602.9	20.0	3.5" - Topsoil	N.E.	N.E.	N.E.	N.E.	N.E.	N.E.		
16		0 00	E" Topooil		E07 E	L					
D-10	038.0	20.0		0.2	C. 18C		.u.Z	N.E.	N.E.		
B-17	598.2	22.0	Topsoil	2.0	596.2	N.E.	N.E.	N.E.	N.E.		
	Boring Advance	Boring Advanced to Auger Befried	100				Boring Schodule	ad to be Advanced to	20 faat and Tarminate		
	BOILING AUVAILICE	ed to Auger Rein	ISAI		_		polling oureau	boring scheduled to be Advanced to 20 leet and Terminated	ZU IEET ANG TEITIIIIAIE	Di	

Empire Geo-Services, Inc. 5167 South Park Avenue Hamburg, New York 14075

N.E. - Not Encountered N.E.B.C. - Not Encountered Before Water Added to Boring to Facilitate Rock Coring N.D. - Not Determined

Boring Advanced 5 feet into Bedrock with Rock Coring

Groundwater Observation Well Installed in Boring. Water Level on April 1st, 2014

April 24, 2014 Project No.: BE-13-192

TABLE 2 (SHEET 2 OF 3)

SUMMARY OF SUBSURFACE CONDITIONS

PROPOSED WESTWOOD COUNTRY CLUB DEVELOPMENT PROJECT NORTH FOREST ROAD AMHERST, NEW YORK

									Ĩ		Ĩ
Boring	Ground Surface	Total Boring	Surface	Fill	Bottom of Fill	Auger Refusal	Auger Refusal	Preestanding Water in	EI. or Freestanding Water in	Depth to Groundwater in Well	EI. of Groundwater in Well
	EI. (Ieel)	(iaai) IIIdad	INIALETIAL	nahili (laar)	EI. (Ieel)	nehrii (ieer)	EI. (Ieel)			(leel)	(iaai)
B-18	588.5	35.0	3" - Topsoil	4.0	584.5	35.0	553.5	N.E.	N.E.		
B-19	592.3	20.0	Topsoil	2.0	590.3	N.E.	N.E.	N.E.	N.E.		
B_20	507 U	13 F	Toneoil		EOE O	125	662 E	16 E	ROD R		
D20	0.180	0.04	I obsoli	D.2	0.080	40.0	000.0	C.01	000.0		
B-21	598.2	41.5	Native Soil	N.E.	N.E.	41.5	556.7	39.0	559.2		
B-22	599.1	44.1	11" - Topsoil	N.E.	N.E.	44.1	555.0	N.E.	N.E.		
B-23	596.8	22.0	11" - Topsoil	N.E.	N.E.	N.E.	N.E.	N.E.	N.E.		
B-24 w/Well	598.6	41.3	Topsoil	4.0	594.6	41.3	557.3	N.E.	N.E	8.2	588.6
B-25	594.8	40.2	4" - Topsoil	2.0	592.8	40.2	554.6	13.6	581.2		
B-26	594.1	40.8	Topsoil	2.0	592.1	40.8	553.3	33.5	560.6		
B-27	594.3	22.0	Fill	2.0	592.3	N.E.	N.E.	N.E.	N.E.		
B-28	593.2	20.0	6" - Topsoil	2.0	591.2	N.E.	N.E.	N.E.	N.E.		
B-29	594.5	38.5	3" - Topsoil	2.0	592.5	33.5	561.0	19.3	575.2		
			H			L	L	L	L		
D30	0.440	20.0		4.0	0.080	N.E.	N.F.	IN.E.	N.E.		
B-31	592.5	43.5	6" - Topsoil	N.E.	N.E.	38.5	554.0	N.E.B.C.	N.E.B.C.		
B-32	594.0	30.5	3" - Topsoil	4.0	590.0	30.5	563.5	N.E.	N.E.		
B-33	592.9	20.0	Topsoil	2.0	590.9	N.E.	N.E.	N.E.	N.E.		
B-34	593.4	31.4	12" - Topsoil	2.0	591.4	31.4	562.0	N.E.	N.E.		
	Boring Advanced to Refusal	ed to Refusal					Boring Schedule	Boring Scheduled to be Advanced to 20 feet and Terminated	20 feet and Terminate	pe	

N.E. - Not Encountered N.E.B.C. - Not Encountered Before Water Added to Boring to Facilitate Rock Coring N.D. - Not Determined

Empire Geo-Services, Inc. 5167 South Park Avenue Hamburg, New York 14075

Groundwater Observation Well Installed in Boring. Water Level on April 1st, 2014.

Boring Advanced 5 feet into Bedrock with Rock Coring

boring scheduled to be Advanced to 20 feet and Terminated

Boring Advanced to Refusal

April 24, 2014 Project No.: BE-13-192

TABLE 2 (SHEET 3 OF 3)

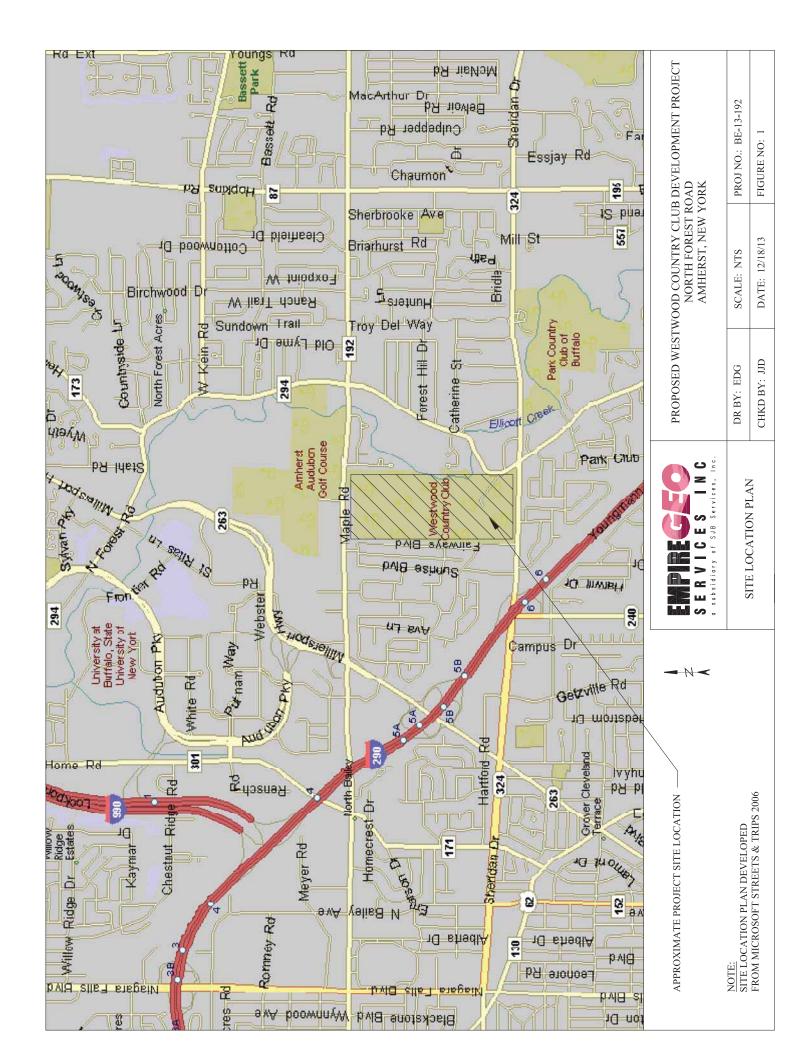
SUMMARY OF SUBSURFACE CONDITIONS

PROPOSED WESTWOOD COUNTRY CLUB DEVELOPMENT PROJECT NORTH FOREST ROAD AMHERST, NEW YORK

								Denth of		Denth to	9° 11
Boring	Ground	Total	Curfaco	Ē	Bottom of Fill	Auger	Auger	Preestanding	EI. OI Freestanding Water in	Groundwater	EI. OT Groundwater in Mall
Number	El. (feet)	Depth (feet)	Material	Depth (feet)	El. (feet)	Depth (feet)	EI. (feet)	Boring (feet)	Boring (feet)	(feet)	(feet)
B-35	593.0	32.5	7" - Topsoil	N.E.	N.E.	32.5	560.5	N.E.	N.E.		
B-36	593.3	31.0	3" - Topsoil	2.0	591.3	31.0	562.3	28.0	565.3		
l		1	:			1					
B-37	592.1	22.5	8" - Topsoil	4.0	588.1	22.5	569.6	20.0	572.1		
		0.10	Ē			010		L			
B-38	592.4	24.0		2.0	590.4	24.0	568.4	N.E.	N.E.		
	0.001					L	L	L			
B-39	292.0	18.1	4" - 1 opsoil	5.0	290.0	N.E.	N.E.	N.E.	N.E.		
			:	1							
B-40	588.9	22.0	Topsoil	5.0	583.9	22.0	566.9	19.0	569.9		
									1		
B-41	590.3	20.0	3" - Topsoil	2.0	588.3	N.E.	N.E.	N.E.	N.E		
B-42	601.1	22.0	13" - Topsoil	2.0	599.1	N.E.	N.E.	N.E.	N.E.		
B-43	593.2	35.0	6" - Topsoil	2.0	591.2	30.0	563.2	20.0	573.2		
B-44	592.7	18.7	6" - Topsoil	2.0	590.7	N.E.	N.E.	N.E.	N.E.		
B-45	591.9	29.5	7" - Topsoil	2.0	589.9	24.5	567.4	15.0	576.9		
B-46	591.6	20.0	Topsoil	2.0	589.6	N.E.	N.E.	N.E.	N.E.		
B-47	594.9	39.0	6" - Topsoil	2.0	592.9	34.0	560.9	20.0	574.9		
B-48	595.8	31.0	3" - Topsoil	2.0	593.8	31.0	564.8	N.E.	N.E.	2.4	593.4
B-49	593.5	20.0	5" - Topsoil	2.0	591.5	N.E.	N.E.	N.E.	N.E.		
	Douise Advissood to Defined				_		Doma Cohodul	Desired Address (1997) (1977)	otonium of here to the too	-	

N.E.B.C. - Not Encountered Before Water Added to Boring to Facilitate Rock Coring N.D. - Not Determined N.E. - Not Encountered

Empire Geo-Services, Inc. 5167 South Park Avenue Hamburg, New York 14075


Groundwater Observation Well Installed in Boring. Water Level on April 1st, 2014.

Boring Advanced 5 feet into Bedrock with Rock Coring

Boring Advanced to Refusal

Boring Scheduled to be Advanced to 20 feet and Terminated

FIGURES

APPENDIX A

TEST BORING LOGS

DAT STA FINI SHE	RT SH		12	/3/20 /3/20 OF				JB SERVICES, INC. UBSURFACE LOG	HOLE NO. <u>B-1</u> SURF. ELEV <u>605.9' ±</u> G.W. DEPTH <u>See Notes</u>
PRC PRC		CT: NO.:				MPR	OVEN	AMMERST, NEV	
DEPTH		SMPL		BLO	WS ON S	AMPLER		SOIL OR ROCK	NOTES
FT.		NO.	0/6	6/12	12/18	N		CLASSIFICATION	
_	/	1	WOH	1				TOPSOIL	
_	Ц		3	6		4			WOH = Weight of
_	-//	2	7	9		04		Red-Brown Silty CLAY / Clayey Silt, some f-c Sand,	Hammer and Rods
	+	3	12 5	17 5		21		tr.gravel (moist, v.stiff, CL-ML)	
5	-//	3	5 7	5 12		12		(stiff)	
-	+	4	13	23		12		(Sui)	
-	-//	4	36	23 39		59		Contains some-and f-c Sand (hard)	
-	17	5	9	16		00			-
10	1/1		24	32		40		Becomes Brown	-
	17	6	9	22					-
-	1/1		26	32		48		Contains trlittle f-c Gravel	-
-	Г								7
15									
Γ]		7	8	13				Becomes Brown-Gray	
_			18	22		31		Becomes Brown-Gray	
_									
_	-								-
20				10					
-	-1/1	8	6	10				(v.stiff)	
-	+		13	19		23			
-	-								
25	-								
		9	8	10				•	-
-	1/1		13	18		23			-
-									7
30									
 	/	10	7	10					
_	\square		14	19		24			
_	4								
	-								
35	+			-7				•	4
-	-1/1	11	6	7		10			
-	+		9	15		16		•	–
-	-								
40	1							1	-
	DR	ILLER:		A	A. KOS	SKE		NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS DRILL RIG TYPE : <u>CME-550X</u> USING HOLLOW STEM AUGERS	SSIFIED BY: Geologist

FINI: SHE PRC	TART12/3/2013SJB SERVICES, INC. SUBSURFACE LOGSUBSURFACE LOGHOLE NO. SURF. ELEVB-112/3/201312/3/2013605.9' ±									SURF. ELEV 605.9' ± G.W. DEPTH See Notes
	J. 1	SMPL BLOWS ON SAMPLE								
DEPTH FT.		SMPL NO.	0/6	BLO 6/12	WS ON S 12/18	AMPLER N		SOIL OR RC CLASSIFICA		NOTES
-		12	7 8	7 12		15		(stiff)		
45		10								_
-		13	3 3	3 4		6		Brown-Gray Silty CLAY, tr.sand (moist-wet, medium, CL)	2	
50		14	1	2						
		14	1	2		3		Becomes Red-Brown (soft)		
55										
-	\cdot	15	3	1 6		5				
60	-	16	50/0.1			REF				REF = Sample Spoon Refusal NQ '2' Size Rock Core
_										
65								Gray SHALE Rock, medium ha	ırd, sound, bedded.	RUN #1: 62.5' - 67.5' REC = 96% RQD = 82%
70								Boring Complete	e at 67.5'	Free standing water recorded at 53.4' prior to coring.
75										
80										1
	DR	ILLER:		A	. KOS	SKE		NCHES WITH A 140 LB. PIN WT. FALLING DRILL RIG TYPE : USING HOLLOW STEM AUGERS	30-INCHES PER BLOW CME-550X	CLASSIFIED BY: <u>Geologist</u>

DATE	D	A-	ΙE	
------	---	----	----	--

START	12/17/2013			
FINISH	12/17/2013			
SHEET	1 OF 1			

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-2 SURF. ELEV 603.7' ± G.W. DEPTH See Notes

	1	NO.:		13-19			AMHERST, NE	
тн		SMPL				AMPLER	SOIL OR ROCK CLASSIFICATION	NOTES
	┝	NO.	0/6	6/12	12/18	N	TOPSOIL	Driller retes errrer 40"
	4/	1	3	3				Driller notes approx. 12"
	Ł		5	6		8	Red-Brown and Black Silty CLAY, tr.sand (moist, FILL)	Topsoil
	47	2	5	4			Brown Silty CLAY, tr.sand (moist, stiff, CL)	
_	Ł,		7	8		11		
	1/	3	4	7			(v.stiff)	
			22	25		29		
	1/	4	8	9			Brown Clayey SILT, trlittle f-c Sand (moist, v.stiff, ML)	
			19	23		28		
	1/	5	7	8			Brown Silty CLAY, tr.sand (moist, v.stiff, CL)	
o	V		10	12		18		
	17	6	5	10				
_	V		11	14		21		
_								
5								
	17	7	5	7			Becomes Brown-Gray, contains little-some f-c Sand	
	V		15	16		22		
								4
	7	8	8	8			Brown-Gray Clayey SILT, some f-c Sand, tr.gravel	
0	V		17	20		25	(moist, v.stiff, ML)	
	1						Boring Complete at 20.0'	No free standing water
	1							encountered at boring
	1							completion.
5	1							
	1							
	1		1					
	1		1					
_	1							
0	1							
_	1							
	1						-1	
	1							
-	1							
5	1							
_	1		<u> </u>				-	
	1					\vdash		
	1					\vdash		
	1					\vdash		
0 —	1							
0	<u> </u>		I					<u>I</u>
	N -			עופח ()			12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLA	SSIFIED BY: Geologist
						BCZAK	DRILL RIG TYPE : CME-550X	
	DR			. л. J				

DAT STAI FINIS SHE PRO	RT SH ET	CT:	<u>12/17/2013</u> <u>12/17/2013</u> <u>1 OF 1</u> PROPOSED IMPRO			HOLE NO. <u>B-3</u> SURF. ELEV <u>603.1' ±</u> G.W. DEPTH <u>See Notes</u> COUNTRY CLUB		
PRO			BE-1				AMHERST, NE	
DEPTH FT.		SMPL NO.	0/6	BLO 6/12	WS ON S	AMPLER N	SOIL OR ROCK CLASSIFICATION	NOTES
	17	1	1	1			TOPSOIL	Driller notes approx. 12"
	Н	2	2 5	3 6		3	Red-Brown and Black Silty CLAY, tr.sand (moist, FILL)	Topsoil
_	\mathbb{Z}	2	6	9		12	Red-Brown Silty CLAY, tr.sand (moist, stiff, CL)	
5	\cdot	3	7	8		10	(v.stiff)	
	H	4	8 10	11 12		16	-	
	И		11	14		23		
10	/	5	10 14	12 17		26	Becomes Brown-Gray, contains little f-c Sand, tr.gravel	_
10		6	14		50/0.3	REF	Contains tr.boulder fragments (hard)	REF = Sample Spoon
	Н							Refusal
	$\left \right $							_
15							+	-
	/	7	12	11			(v.stiff)	
	Н		15	14		26	-	
							+	-
20								
	\cdot	8	15 12	10 16		22	-	No Recovery Sample #8
_	ŕ		12	10				
							Boring Complete at 22.0'	No free standing water
25							•	encountered at boring
							-	_
30	$\left \right $						 4	-
	1						1	
	$\left \right $						+	4
							1	-
35								
	$\left \right $						+	4
				ļ			1	-
]							
40								
	DR	ILLER:		Τ.	FARF	RELL	NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLA DRILL RIG TYPE : <u>CME-550X</u> USING HOLLOW STEM AUGERS	SSIFIED BY: <u>Geologist</u>

DATE

 START
 1/28/2014

 FINISH
 1/30/2014

 SHEET
 1
 OF
 2

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO.	B-4
SURF. ELEV	601.5' ±
G.W. DEPTH	See Notes

РТН		SMPL		BLO	NS ON S	AMPLER	SOIL OR ROCK	NOTES
г.		NO.	0/6	6/12	12/18	N	CLASSIFICATION	
	1/	1	2	3			TOPSOIL	Driller notes approx. 3"
	\boldsymbol{V}		5	5		8	Red-Brown and Black Silty CLAY, tr.sand, tr.organics	Topsoil
	1/	2	4	3			(moist, FILL)	1
			4	6		7	Red-Brown Silty CLAY, tr.sand (moist, medium, CL)	
5	1/	3	5	6			Brown Clayey SILT, trlittle f-c Sand (moist, stiff, ML)	
	Ц		7	9		13		_
	1/	4	5	8			(v.stiff)	
			10	14		18		
	1/1	5	16	23		10	— (hard)	
0			19	21		42		
	/	6	12	21		10		
	Ц		25	26		46		
			<u> </u>					-
	$\left \right $				\mid			
15				0				
	$\frac{1}{2}$	7	5	9		00	Brown-Gray Silty CLAY, little-some f-c Sand, tr.gravel	
	Н		11	13		20	(moist, v.stiff, CL)	
	$\left \right $							
20		0	6	10			Brown Croy Clovey SILT little for Sand	
_	/	8	6	10		22	Brown-Gray Clayey SILT, little f-c Sand	
_	\mathbf{H}		13	19		23	(moist, v.stiff, ML)	
25								
		9	5	7			-	
	1/1	3	10	17		17		
	ſ		10	17				
	1							
30	1							
_		10	5	6				
	1/	. •	12	14		18	Contains some f-c Sand, trlittle f-c Gravel	
	Ħ			-			-1	
	1		1				-1	
35	1		1				7	
	7	11	4	8			-	
			14	16		22		
	П							
_	1						—	-
40								
	N = DR			o driv A. J			12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLA DRILL RIG TYPE : CME-550X	SSIFIED BY: Geologist

DATE STAF FINIS SHEE PRO	RT SH ET						S	JB SERVICES, INC. UBSURFACE LOG	ATION: WESTWOOE AMHERST, N	
DEPTH		SMPL							NOTES	
FT.		NO.	0/6	6/12	12/18	Ν		CLASSIFICA	ATION	
_		12	6 13	10 15		23				_
_	Η		15	15		23				
45		13	8	14				Gray-Brown f-m SAND, some	-and Silt_tr -little f-c	_
	/	10	26	37		40		Gravel (moist, compact, SM)		
										NQ '2' Size Rock Core
50								Gray SHALE Rock, medium h	ard sound thinly	
- 50								bedded to bedded, numerous	•	REC = 75%
								seams.		RQD = 40%
_										1
55								Boring Comple	te at 53 5'	Free standing water
								Boning Comple		recorded at 47.0' prior to
										coring.
_										
60										Free standing water recorded at 20.0' after
_ 00 _										coring.
65										-
_ 00 _										
70										-
⊢ ́` —										-
]
_					<u> </u>					_
75										-
<u> </u>										
_										-
80					-			-		-
	DR	LLER:		A. J	IAKUE	BCZAK		NCHES WITH A 140 LB. PIN WT. FALLING DRILL RIG TYPE : JSING HOLLOW STEM AUGERS		CLASSIFIED BY: <u>Geologist</u>

DATE SJB SERVICES, INC. START HOLE NO. B-5 1/15/2014 SUBSURFACE LOG 1/15/2014 SURF. ELEV 603.2' ± **FINISH** 1 OF G.W. DEPTH See Notes SHEET 1 LOCATION: WESTWOOD COUNTRY CLUB PROJECT: PROPOSED IMPROVEMENTS AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER CLASSIFICATION 6/12 12/18 Ν 0/6 FT. NO TOPSOIL Driller notes approx. 2" 1 1 3 6 7 9 Brown-Black Clayey SILT, tr.sand, tr.organics Topsoil 2 5 6 (moist-wet, FILL) Red-Brown Silty CLAY, tr.sand (moist-wet, stiff, CL) 8 13 7 3 7 9 5 Becomes Brown (v.stiff) 15 20 11 4 14 17 19 15 36 Contains occasional Silt seams (hard) Red-Brown Clayey SILT, little-some f-c Sand, tr.gravel 5 4 8 (moist, stiff, ML) 7 14 6 10 12 6 11 (v.stiff) 10 12 22 15 7 24 No Recovery Sample #7 11 12 7 23 20 8 15 11 Becomes Brown-Gray, contains some f-c Sand 10 18 21 25 Brown-Gray Silty CLAY, little f-c Sand, tr.gravel 9 15 17 (moist, hard, CL) 21 24 38 30 10 15 18 Brown-Gray Clayey SILT, some f-c Sand, tr.gravel 50 50/0.4 68 (moist, hard, ML) Boring Complete with Sample Spoon Refusal at 31.9' Free standing water and Auger Refusal at 32.7' recovery at 16.5' at 35 boring completion. 40 N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: Geologist DRILLER: S. WOLKIEWICZ DRILL RIG TYPE : CME-550SE

METHOD OF INVESTIGATION	ASTM D-1586	USING HOLLOW STE	M AUGERS

DATE

START	12	2/5/20	13
FINISH	12	2/5/20	13
SHEET	1	OF	1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-6 SURF. ELEV 603.1' ± G.W. DEPTH See Notes

ртн		SMPL				AMPLER	SOIL OR ROCK CLASSIFICATION	NOTES
		NO. 1	0/6 1	6/12 2	12/18	N	TOPSOIL	Driller notes approx. 14"
_		I	1	2		3	Red-Brown Clayey SILT, little f-c Sand (moist, FILL)	Topsoil
	+	2	3	2		5		
		2	4	4		6	Red-Brown Silty CLAY, tr.sand (moist, medium, CL)	
	7	3	4	5				
		-	6	8		11	Red-Brown Clayey SILT, trlittle f-c Sand (moist, stiff, ML)	
	7	4	7	9			-	
	/1		11	12		20	(v.stiff)	
	7	5	6	7				
)			6	9		13	(stiff)	
	/	6	7	8				
			7	11		15		
_								
_								
,,		_						
	/	7	4	4			Brown-Gray Silty CLAY and f-c Sand, tr.gravel	
_	\square		5	7		9	(moist, stiff, CL)	
_								
) —								No free standing water
´ —		8	8	8			Brown-Gray Clayey SILT and f-c Sand, tr.gravel	noted at boring completion
_		0	11	12		19	(moist, v.stiff, ML)	
-	H							
_							Boring Complete at 22.0'	2" PVC Groundwater
5								Observation Well installe
	Ì							at boring completion.
								Refer to installation log
								for details.
_							_	
)							_	
_								
_								
_			<u> </u>				_	
. —								
_								
_								
_					\vdash			
, —								
			1				1	1
	N =	NO. BL	OWS TO) DRIV	E 2-INC	CH SPOON	2-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSI	FIED BY: Geologist

MONITORING WELL COMPLETION RECORD

WELL NUMBER: B-6	SERVICES, INC.
PROJECT NAME: WESTWOOD CC	DRILLING METHOD: HOLLOW STEM AUGERS
PROJECT NUMBER: BE-13-192	GEOLOGIST: N/A
DRILLER: T. FARRELL	INSTALLATION DATE(S): 12/5/2013

TYPE OF SURFACE SEAL: CONCRETE PAD WITH FLUSH MOUNT SURFACE CASING TYPE OF BACKFILL: AUGER CUTTINGS BOREHOLE DIAMETER: 8" ± I.D. OF RISER PIPE: 9VC TYPE OF SEAL: 5.0' EL 598.1' ± TYPE OF SEAL: 5.0' EL 595.1' ±
CASING CASING CASING TYPE OF BACKFILL: BOREHOLE DIAMETER: 8" ± I.D. OF RISER PIPE: TYPE OF RISER PIPE: PVC DEPTH OF SEAL: TYPE OF SEAL: TYPE OF SEAL:
TYPE OF BACKFILL: AUGER CUTTINGS BOREHOLE DIAMETER: 8" ± I.D. OF RISER PIPE: 2.0" TYPE OF RISER PIPE: PVC DEPTH OF SEAL: 5.0' EI. 598.1' ± TYPE OF SEAL: BENTONITE CHIPS
BOREHOLE DIAMETER: 8" ± I.D. OF RISER PIPE: 2.0" TYPE OF RISER PIPE: PVC DEPTH OF SEAL: 5.0' EI. 598.1' ± TYPE OF SEAL: BENTONITE CHIPS
BOREHOLE DIAMETER: 8" ± I.D. OF RISER PIPE: 2.0" TYPE OF RISER PIPE: PVC DEPTH OF SEAL: 5.0' EI. 598.1' ± TYPE OF SEAL: BENTONITE CHIPS
I.D. OF RISER PIPE:2.0"TYPE OF RISER PIPE:PVCDEPTH OF SEAL:5.0' EI. 598.1' ±TYPE OF SEAL:BENTONITE CHIPS
TYPE OF RISER PIPE: PVC DEPTH OF SEAL: 5.0' El. 598.1' ± TYPE OF SEAL: BENTONITE CHIPS
TYPE OF RISER PIPE: PVC DEPTH OF SEAL: 5.0' El. 598.1' ± TYPE OF SEAL: BENTONITE CHIPS
DEPTH OF SEAL: 5.0' EI. 598.1' ± TYPE OF SEAL: BENTONITE CHIPS
TYPE OF SEAL: BENTONITE CHIPS
DEPTH OF SAND PACK: 8.0' El. 595.1' ±
DEPTH OF TOP OF SCREEN: 10.0' EI. 593.1' ±
TYPE OF SCREEN: PVC
SLOT SIZE X LENGTH: .010 X 10.0'
I.D. OF SCREEN: 2.0"
TYPE OF SAND PACK: MORIE "O" FILTER SAND
DEPTH BOTTOM OF SCREEN: 20.0' EI. 583.1' ±
DEPTH BOTTOM OF SAND PACK: 20.0' EI. 583.1' ±
TYPE OF BACKFILL BELOW OBSERVATION WELL:
FILTER SAND
ELEVATION/ DEPTH OF HOLE: 22.0' EI 581.1' ±

DATE START <u>12/12/2013</u> FINISH <u>12/12/2013</u> SHEET <u>1</u> OF <u>2</u>								JB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>B-7</u> SURF. ELEV <u>603.0' ±</u> G.W. DEPTH <u>See Notes</u>
PRO PRO		CT: NO.:				IMPR	OVEN	AMHERST, NEV	
DEPTH		SMPL	BLOWS ON SAMPLER SOIL OR ROCK						NOTES
FT.		NO.	0/6	6/12	12/18	Ν		CLASSIFICATION	
	1/	1	4	2				TOPSOIL	Driller notes approx. 8"
	Ц		3	2		5		Brown Silty CLAY, tr.sand (moist, medium, CL)	Topsoil
	\cdot	2	3 3	3 5		6			
5	Н	3	7	11		0		Red-Brown Clayey SILT, little f-c Sand, tr.gravel,	
— [°] —	1/1	0	, 13	10		24		tr.boulder fragments (moist, v.stiff, ML)	
	Н	4	10	8		21			—
	1/1		5	5		13		(stiff)	
	7	5	7	8					
10	1/1		7	11		15		Becomes Brown	
		6	8	9				Brown-Gray Silty CLAY, trlittle f-c Sand, tr.gravel	
	V		13	15		22		(moist-wet, v.stiff, CL)	
15	Ц								
	1/	7	7	4					
_	Ц		6	7		10		(stiff)	
20	\square	0	6	F					
	\cdot	8	6 7	5 6		12			No Recovery Sample #8
	Н		1	0		12			_
									—
25									
	7	9	6	8				Brown-Gray Clayey SILT, little-some, f-c Sand, tr.gravel	
	V		8	12		16		(moist, v.stiff, ML)	
_									
_									
30	\square								
	/	10	6	8				(stiff)	
	Ц		7	14		15			_
							L	4	_
								4	_
35	\square	14	10	10			<u> </u>	•	–
	/	11	10 9	12 5		21		(v.stiff)	–
	H		3	5		~ 1			-
	1							+	-
40	1							1	–
			OWSTO				ON 12-II	NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS	SSIFIED BY: Geologist

METHOD OF INVESTIGATION	ASTM D-1586	USING HOLLOW STEM AUGERS

FINI	TART 12/12/2013 SJB SERVICES, INC. NISH 12/12/2013 SUBSURFACE LOG HEET 2 OF 2							SERVICES, INC.	HOLE NO. <u>B-7</u> SURF. ELEV <u>603.0' ±</u> G.W. DEPTH <u>See Notes</u>			
PRO PRO			PRC BE-1			MPR	OVEN	IENTS LOC	CATION: WESTWOOD AMHERST, N			
DEPTH FT.		SMPL NO.	BLOWS ON SAMPLER								NOTES	
45		12	4 3 5	574		8		Gray Highly Weathered SHA	LE Rock (wet)			
-		14	3 50/0.1	8		7 REF		Boring Complete with Samp	le Spoon Refusal at 47.5'	No free standing water		
50								and Auger Ref	usal at 47.6'	No free standing water encountered at boring completion.		
60	-							- - - - -				
65	-											
70								- - - -				
75 												
80	DR	ILLER:		Τ.	FARF	RELL		NCHES WITH A 140 LB. PIN WT. FALLIN DRILL RIG TYPE : JSING HOLLOW STEM AUGERS		ASSIFIED BY: Geologist		

DATE SJB SERVICES, INC. START HOLE NO. B-8 1/14/2014 SUBSURFACE LOG 1/14/2014 SURF. ELEV 602.8' ± FINISH 1 OF G.W. DEPTH See Notes SHEET SERVICES. LOCATION: WESTWOOD COUNTRY CLUB PROJECT: PROPOSED IMPROVEMENTS AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER CLASSIFICATION 12/18 Ν 0/6 6/12 FT. NO. TOPSOIL Driller notes approx. 2" Brown Silty CLAY, tr.sand (moist-wet, soft, CL) Topsoil Becomes Red-Brown and Gray (moist, stiff) **Becomes Brown** (hard) Contains occasional Silt partings and seams (stiff) Red-Brown Clayey SILT, little f-c Sand, tr.gravel (moist, stiff, ML) Brown Silty CLAY, little f-c Sand, tr.gravel (moist, v.stiff, CL) Brown-Gray Clayey SILT, little f-c Sand, tr.gravel (moist, v.stiff, ML) Contains some f-c Sand (hard)

N = NO. BLOV	VS TO DRIVE 2-INCH SPOON 12-INCH	CLASSIFIED BY:	Geologist		
DRILLER:	S. WOLKIEWICZ	DRILL RIG TYPE :	CME-550SE		
METHOD OF	INVESTIGATION ASTM D-1586 USIN	IG HOLLOW STEM AUGERS			

STAF FINIS SHEE	DATE START <u>1/14/2014</u> FINISH <u>1/14/2014</u> SHEET <u>2</u> OF <u>2</u> PROJECT: <u>PROPOSED IMPR</u> PROJ. NO.: <u>BE-13-192</u>							TART 1/14/2014 SJB SERVICES, IN INISH 1/14/2014 SUBSURFACE LO HEET 2 OF 2 ROJECT: PROPOSED IMPROVEMENTS							MENTS LOCATION: WESTWOOD COUNTRY	V 602.8' ± 'H See Notes
PRO	J. I	NO.:						AMHERST, NEW YORK								
DEPTH		SMPL		BLO	WS ON S	AMPLER			NOTES							
FT.	\vdash	_{NO.}	0/6 13	6/12 17	12/18	N	CLASSIFICATION No Recovery	Sample #12								
-		12	16	15		33										
]								
45																
⊢ ^{-,} –	\forall	13	13	21					_							
_	И		38	32		59		Contains occasional Shale fragments	_							
_					<u> </u>			Boring Complete with Auger Refusal at 47.5' No free stand								
50								Boring Complete with Auger Refusal at 47.5' No free stand encountered								
								completion.								
_																
-																
55																
\square]								
60																
—																
-																
								<u>-</u>								
65																
_																
-																
70								┥ │	_							
-																
	1							<u></u>								
								4								
75																
-	1															
]	_							
					<u> </u>				_							
80			<u> </u>		I											
	DR	ILLER:		S. W	/OLKI	EWICZ	7	P-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: DRILL RIG TYPE : CME-550SE USING HOLLOW STEM AUGERS	Geologist							

DATE STAF FINIS SHEE	ART 1/27/2014 SJB S ISH 1/27/2014 SUB						S	UB SERVICES, INC. UBSURFACE LOG	HOLE NO. <u>B-9</u> SURF. ELEV <u>602.4' ±</u> G.W. DEPTH <u>See Notes</u>
		NO.:				MPR	OVEN	AMHERST, NEV	
DEPTH FT.		SMPL NO.	0/6	BLOWS ON SAMPLER SOIL OR ROCK 0/6 6/12 12/18 N CLASSIFICATION				NOTES	
	7	1	2	2				TOPSOIL	Driller notes approx. 3"
	Ц		2	2		4		Brown-Black Silty CLAY, tr.sand, tr.organics	Topsoil
		2	2	3 4		6		(moist-wet, FILL) Red-Brown Silty CLAY, tr.sand, occasional Silt]
5	\square	3	4	7		0		partings (moist, medium, CL)	
_	/		9	15		16		(v.stiff)	
_		4	5	8					
	Н	5	10 4	14 5		18			_
10	//	5	4	8		13		(moist-wet, stiff)	
	7	6	4	4					
	Δ		5	6		9			
15									_
15		7	2	2				Red-Brown Clayey SILT, some f-m Sand	-
	Vi	•	2	3		4		(moist-wet, medium, ML)	
									_
20		8	9	12					_
		0	9 14	16		26		Contains tr.gravel (moist, v.stiff)	-
	Η								_
25									_
		9	14 15	16 17		31		(hard)	_
_	Н		15	17		51			
								<u> </u>	-
30									
	/	10	14	19				Gray-Brown f-c SAND, some-and Silt, tr.gravel	
	Н		20	22		39		(moist, compact, SM)	-
—								+	-
35									
	/	11	13	15					
	Ц		17	19		32			_
								+	-
40							ļ	+	-
	DRI	LLER:		A. J	AKUB	CZAK		NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS DRILL RIG TYPE : <u>CME-550X</u> JSING HOLLOW STEM AUGERS	SSIFIED BY: <u>Geologist</u>

FINISH	DATE START <u>1/27/2014</u> FINISH <u>1/27/2014</u> SHEET <u>2</u> OF <u>2</u> PROJECT: PROPOSED IMPR							JB SERVICES, INC. SUBSURFACE LOG	SERVICES, INC.	HOLE NO. <u>B-9</u> SURF. ELEV <u>602.4' ±</u> G.W. DEPTH <u>See Notes</u>	
PROJI PROJ.			PRC BE-1			MPR	OVEN	AENTS LOC	ATION: WESTWOOD AMHERST, N		
DEPTH		SMPL			WS ON S	1	1	SOIL OR F CLASSIFIC	SOIL OR ROCK		
FT.	7	_{NO.} 12	^{0/6}	6/12 19	12/18	N		Brown-Gray f-m SAND and S			
	4		21	23		40		(moist, compact, SM)			
45								Boring Complete with Au	uger Refusal at 44.0'	Free standing water recorded at 22.0' at boring completion	
50 55	-										
	-										
⁶⁵ 											
70											
75											
C	DRII	LLER:		A. J	AKUE	BCZAK		NCHES WITH A 140 LB. PIN WT. FALLIN DRILL RIG TYPE : USING HOLLOW STEM AUGERS		LASSIFIED BY: Geologist	

DATE STAR FINIS SHEE PROJ	RT <u>1/27/2014</u> SH <u>1/27/2014</u>					IMPR	S	UB SERVICES, INC. UBSURFACE LOG	HOLE NO. <u>B-10</u> SURF. ELEV <u>600.4' ±</u> G.W. DEPTH <u>See Notes</u>
PRO									
DEPTH		SMPL	BLOWS ON SAMPLER					SOIL OR ROCK CLASSIFICATION	NOTES
FT.	7	<u>NO.</u>	2	^{6/12}	12/18	N		TOPSOIL	Driller notes approx. 3"
_	/†		3	3		5		Black Organic Clayey SILT, little f-c Sand (moist, FILL)	Topsoil
	7	2	4	5				Red-Brown Clayey SILT, little f-c Sand, tr.gravel	
	Д		7	6		12		(moist, stiff, ML)	
5	Λ	3	12	11					
_	Ц		11	12		22			
_		4	8 13	10 12		22			_
	+	5	13	5		23			
10	/ŀ	0	15	17		20			
	7	6	5	14					-1
	/[17	15		31		(hard)	
_									
15								Boring Complete with Auger Refusal at 13.5'	No free standing water
_									encountered at boring completion.
_	ŀ								
_									
20									-
_									_
									_
25									
_	ŀ								
_									
									-
30									
_									
_	╞								4
35								+	-
_ ~ _								1	-
—								1	-
]
40									
	DRI	LLER:		S. W	/OLKI	EWICZ	2	NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS DRILL RIG TYPE : <u>CME-550X</u> USING HOLLOW STEM AUGERS	SSIFIED BY: Geologist

DATE START FINISH SHEET PROJEC PROJ. N		1/27 1 C		 1 0 IMPR	S	SJB SERVICES, INC. SUBSURFACE LOG Image: Subsurface log SERVICES, INC. SUBSURFACE LOG Image: Subsurface log Services, INC. HOLE NO. B-10A SURF. ELEV 600.4' ± G.W. DEPTH See Notes MENTS LOCATION: WESTWOOD COUNTRY CLUB AMHERST, NEW YORK	-		
DEPTH	SMPL			ISAMPLER		-			
FT.	NO.		6/12 12/1	1		CLASSIFICATION	NOTES		
						Boring B-10A is a continuation of Boring B-10. Driller notes moving 7' north and augering to refusal.			
						Boring Complete with Auger Refusal at 11.7' No free standing water encountered at boring completion.			
20									
25									
30									
35 									
DRIL	LER:	S	. WOLI	KIEWICZ	2	-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: <u>Geologist</u> DRILL RIG TYPE : <u>CME-550X</u> USING HOLLOW STEM AUGERS			

DATE START FINISH SHEET	12/6/2013 12/6/2013 1 OF 2	SU	B SERVICES, INC. IBSURFACE LOG	HOLE NO. <u>B-11</u> SURF. ELEV <u>601.7' ±</u> G.W. DEPTH <u>See Notes</u>
	PROPOSED IMF BE-13-192	ROVEME	ENTS LOCATION: WESTWOOD AMHERST, N	
DEPTH SMPL FT. NO.	BLOWS ON SAMPL 0/6 6/12 12/18 N		SOIL OR ROCK CLASSIFICATION	NOTES
	2 2	— ,		Driller notes approx. 4"
	3 2 5 2 3 5		Black CINDERS, little Silt (moist, FILL) Red-Brown Silty CLAY, tr.sand (moist, medium, CL)	Topsoil
5 3	4 4 7 4 4	+		
- ° <u>-</u> /	5 5 9	F	Red-Brown Clayey SILT, tr.sand (moist, stiff, ML)	_
-4	5 6 1	E	Becomes Brown	_
5	2 3	F	Brown Silty CLAY, tr.sand (moist-wet, medium, CL)	
- ¹⁰ / 6	2 3 5 3 3			–
	4 5 7			_
15 7	1 2			
	1 2 2 3 4		Contains some f-c Sand	
				_
20				
$-\sqrt{\frac{8}{3}}$	2 2 3 3 4 5		Contains tr.sand, tr.gravel	–
		\downarrow		
25				–
9	8 9 12 13 2		Brown-Orange Clayey SILT, little f-c Sand, tr.gravel moist, v.stiff, ML)	_
		,		
30				–
10	4 3	(1	wet, medium)	_
	4 5 7	Ì	· · · · · · · · · · · · · · · · · · ·	–
				_
35 11	2 1			-
	3 1 4			–
40				
DRILLER:	T. FARREL		HES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CI DRILL RIG TYPE : <u>CME-550X</u> ING HOLLOW STEM AUGERS	LASSIFIED BY: Geologist

DATE STAR FINIS SHEE PROJ	RT SH ET	<u>от.</u>	12 2	/6/20 /6/20 OF	2 2	-	S	JB SERVICES, INC. UBSURFACE LOG	SERVICES, INC.	HOLE NO. <u>B-11</u> SURF. ELEV <u>601.7' ±</u> G.W. DEPTH <u>See Notes</u>
PROL				13-19		INPR	OVEN		AMHERST, N	
DEPTH FT.		SMPL NO.	0/6	BLO 6/12	NS ON S	AMPLER N		SOIL OR F CLASSIFIC		NOTES
 45	Ζ	12	4 8	4 12		12		Contains some-and f-c SAND		
	Z	13	21	50/0.2		REF		Gray SHALE Rock fragment	ts (moist)	
								Boring Complete with S Auger Refuse		No free standing water reading obtained at boring completion.
	DRI	LLER:		Т.	FAR	RELL		NCHES WITH A 140 LB. PIN WT. FALLIN DRILL RIG TYPE : JSING HOLLOW STEM AUGERS		CLASSIFIED BY: <u>Geologist</u>

DATE STAR FINISI SHEE	T H		1/2	26/20 26/20 OF				JB SERVICES, INC. UBSURFACE LOG	HOLE NO. <u>B-12</u> SURF. ELEV <u>599.1' ±</u> G.W. DEPTH <u>See Notes</u>
PROJI PROJ						MPR	OVEN	AMHERST, NEV	
DEPTH FT.		SMPL NO.	0/6	BLO 6/12	WS ON S. 12/18	AMPLER		SOIL OR ROCK CLASSIFICATION	NOTES
	/-	1	2 3 3 4	2 4 5 6		5		TOPSOIL Red-Brown Silty CLAY, little f-c Sand (moist, medium, CL) (stiff)	Driller notes approx. 4" Topsoil
_ 5 _	/	3	5 10 4 12	7 13 9 15		17		Contains some f-c Sand, tr.gravel (v.stiff)	
10		5 6	6 33 10	21 30 19		21 54		Becomes Brown-Gray, contains tr.gravel (hard)	
	/		36	37		55			
15	/	7	13 36	28 38		64		Brown-Gray f-m SAND and Clayey Silt, tr.gravel (moist, v.compact, SC-SM)	
_ 20	4	8	22 34	36 39		70			
-								Boring Complete at 20.0'	No free standing water encountered at boring completion.
²⁵									
30								•	
35									
40									
С	DRI	LLER:		A. J	AKUE	CZAK		NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS DRILL RIG TYPE : CME-550X USING HOLLOW STEM AUGERS	SSIFIED BY: Geologist

DATE

 START
 12/16/2013

 FINISH
 12/16/2013

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. <u>B-13</u> SURF. ELEV <u>599.1' ±</u> G.W. DEPTH <u>See Notes</u>

	J. I	NO.:	BE-	13-19)2		AMHERST, NEW YORK
РТН		SMPL		BLO	WS ON S	AMPLER	SOIL OR ROCK NOTES
т.		NO.	0/6	6/12	12/18	Ν	CLASSIFICATION
	17	1	1	2			TOPSOIL Driller notes approx. 10"
	V		2	3		4	Red-Brown Silty CLAY, tr.sand (moist, FILL) Topsoil
	17	2	3	5			
	V		7	7		12	Red-Brown Silty CLAY, tr.sand (moist, stiff, CL)
5	17	3	5	7			
	1/		8	12		15	Red-Brown Clayey SILT, tr.sand (moist, stiff, ML)
	17	4	4	2			Brown Fine SAND, some Silt, occasional Silt seams
	1/	-	3	2		5	(moist-wet, v.loose, SM)
	17	5	4	8			
10	1/	-	8	8		16	Brown Silty CLAY, tr.sand (moist-wet, v.stiff, CL)
	17	6	5	6			
	1/		6	10		12	Red-Brown Clayey SILT, little f-c Sand (moist, stiff, ML)
	ᡟ			10			
	1						
15	1						
-		7	3	7			-
	-//	/	6	8		13	<u> </u>
	╀		0	0		13	
	-						<u> </u>
	+	0	7	8			_
20	-//	8	7			45	_
	<u> </u>		7	10		15	
	4						
	4						Boring Complete at 21.0' No free standing water
	4		<u> </u>				encountered at boring
25	4		<u> </u>				completion.
	4		<u> </u>				
	4		<u> </u>				
	4					\vdash	I
–	-					$ \vdash $	I
30	4						I
	4		<u> </u>	L		\vdash	
	4		<u> </u>	L		\vdash	I
	4		<u> </u>			$ \vdash $	I
_	4		<u> </u>	L		$ \vdash $	I
35	4						I
	1						I
	4						I
	1						
40							
		NO. BL					12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: <u>Geologist</u> DRILL RIG TYPE : CME-550X
	ME			1.		1666	

DATE SJB SERVICES, INC. START HOLE NO. B-14 12/5/2013 SUBSURFACE LOG 12/5/2013 SURF. ELEV 602.9' ± FINISH 1 OF 2 G.W. DEPTH See Notes SHEET SERVICES. LOCATION: WESTWOOD COUNTRY CLUB PROJECT: PROPOSED IMPROVEMENTS AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER 12/18 Ν CLASSIFICATION 0/6 6/12 FT. NO TOPSOIL Driller notes approx. 10" 1 1 3 4 9 7 Red-Brown and Black Clayey SILT, little f-c Sand, Topsoil 2 12 6 tr.gravel (moist, FILL) Red-Brown Silty CLAY, tr.-little f-c Sand 14 10 8 3 8 7 (moist, stiff, CL) 5 10 11 17 Contains some f-c Sand, tr.gravel (v.stiff) 4 9 10 9 11 19 12 5 9 11 15 23 10 6 10 14 15 18 29 15 7 4 5 (moist-wet, stiff, CL) 6 8 11 20 8 6 7 (v.stiff) 15 18 11 25 Brown-Gray f-c SAND and Clayey Silt, little f-c Gravel 9 12 14 (moist, firm, SC-SM) 8 13 22 30 10 15 10 Poor Recovery Sample 9 12 19 #10 35 11 12 13 Red-Brown Silty CLAY, tr.sand (moist-wet, v.stiff, CL) 15 16 28 40 N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: Geologist T. FARRELL DRILL RIG TYPE : CME-550X DRILLER: METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

DATE STAF FINIS SHEI PRO	RT SH ET	CT:	12 2 PRC		013 2 SED	- IMPR(HOLE NO. <u>B-14</u> SURF. ELEV <u>602.9' ±</u> G.W. DEPTH <u>See Notes</u> COUNTRY CLUB		
ДЕРТН		SMPL				AMPLER	SOIL OR ROO		NOTES
FT.		NO.	0/6	6/12	12/18	N	CLASSIFICATI		
	\cdot	12	6 13	10 14		23			_
	H		10	14		20			
45									
45		13	13	18			Brown-Gray SILT and Fine Sand	d, tr.gravel	_
	\square		20	23		38	(moist, compact, ML)		
_		14	50/0.1			REF	Boring Complete with Sample S	Spoon Refusal at 47.5	Free standing water
50							and Auger Refusal		recorded at 38.2' at
\square									boring completion.
-									
55									_
_									_
60									_
65									
70									
75						┝──┤			_
80									_
	DR	ILLER:		A	. KOS	SKE	NCHES WITH A 140 LB. PIN WT. FALLING 30 DRILL RIG TYPE : JSING HOLLOW STEM AUGERS		ASSIFIED BY: Geologist

DATE START FINISH SHEET	H	1/	17/20 17/20 OF)14		SJB SERVICES, INC. SUBSURFACE LOG	SERVICES, INC.	HOLE NO. <u>B-15</u> SURF. ELEV <u>602.9' ±</u> G.W. DEPTH See Notes
PROJE PROJ.			OPO8 13-19		IMPRO	VEMENTS LOC	ATION: WESTWOOD AMHERST, NE	
DEPTH	SMF	۰L	BLO	WS ON S	AMPLER	SOIL OR F	ROCK	NOTES
FT.	NC		6/12	12/18	Ν	CLASSIFIC		
/	/1	2	3		0			Driller notes approx. 3.5"
	/ 2	5	6 11		8	Red-Brown Clayey SILT, little (moist, medium, ML)	t-c Sand	Topsoil _
-	/⊢	12	14		23	(v.stiff)		
5	/ 3		12		20			-
- ' -//	/ —	12	16		24	Becomes Brown		
	4	_	18					
-/	$' \vdash$	23	24		41	Contains tr.gravel (hard)		
	5		12			(v.stiff)		
10	<u> </u>	14	16		26	(v.stin)		
	6	_	14					_
		11	16		25			_
_		_						-
15		_						
_ 13	/ 7	5	9					
-/-	∕⊢-'	15	16		24			-
			10			—		
	8	17	21			Contains some f a Sand (hard	N N	
20	′ 🗌	26	30		47	Contains some f-c Sand (hard)	
								_
_		_				Boring Comple	ete at 20.0'	No free standing water
_		_						enountered at boring
25		_				<u> </u>		completion.
_ 20								
								-
\dashv		+-						-
-			L	L				-
30								
					\square			_
			<u> </u>	 				
		_	<u> </u>	<u> </u>				
35		_				—		-
—								-
\dashv								-
40			L	L				-
D	RILLEF	R:	S. V	/OLKI	EWICZ	N 12-INCHES WITH A 140 LB. PIN WT. FALLING DRILL RIG TYPE : 1586 USING HOLLOW STEM AUGERS	3 30-INCHES PER BLOW CL CME-550SE	ASSIFIED BY: Geologist

DATE SJB SERVICES, INC. START 1/17/2014 HOLE NO. B-16 SUBSURFACE LOG 1/17/2014 SURF. ELEV 599.5' ± FINISH 1 OF G.W. DEPTH See Notes SHEET 1 LOCATION: WESTWOOD COUNTRY CLUB PROJECT: PROPOSED IMPROVEMENTS AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER CLASSIFICATION 6/12 12/18 Ν 0/6 FT. NO TOPSOIL Driller notes approx. 6" 1 WOH 3 4 4 7 Red-Brown Clayey SILT, little-some f-c Sand, tr.gravel Topsoil 2 12 11 (moist, FILL) Red-Brown Clayey SILT, tr.-little f-c Sand WOH = Weight of 23 12 16 3 10 11 (moist, v.stiff, ML) Hammer and Rods 5 17 29 18 4 16 25 27 33 52 Contains little f-c Gravel (hard) 5 18 11 40 22 24 10 6 10 14 19 23 33 15 7 5 10 (moist-wet, v.stiff) 10 12 20 Red-Brown Silty CLAY, tr.-little f-c Sand 8 15 21 43 22 18 (moist, hard, CL) 20 Boring Complete at 20.0' No free standing water encountered at boring completion. 25 30 35 40 N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW Geologist CLASSIFIED BY: DRILLER: S. WOLKIEWICZ CME-550SE DRILL RIG TYPE : METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

DAT STA FINI SHE PRC	RT ISH EET		1/2 1 PRC		014 1 SED I	MPR	S	JB SERVICES, INC. UBSURFACE LOG	SUB BISERVICES, INC.		598.2' ± See Notes
PRC	JJ. I	NO.:	BE-1	13-19	92				AMHERST, NE	W YORK	
DEPTH FT.		SMPL NO.	0/6	BLO	WS ON S	AMPLER		SOIL OR F CLASSIFIC		NO	TES
F1.	+ 7	NO.	3	2	12/16	IN			-		
-	\dashv	1	1	2		3		Brown-Black Silty CLAY, tr.sa			
-	17	2	4	3						-	
_	7/		4	3		7		Gray-Brown f-c SAND and Silt	(wet, FILL)		
5	17	3	4	6				Red-Brown Silty CLAY, tr.sand		1	
			5	6		11					
_	$ \bot /$	4	8	7				Red-Brown Clayey SILT, little	f-c Sand, tr.gravel		
	1/		0	11		15		(maint atiff MI)			

10

15

20

25

30

35

40

	NO.	0/6	6/12	12/18	Ν	CLASSIFICATION		
7	1	3	2			TOPSOIL		
1		1	2		3	Brown-Black Silty CLAY, tr.sand, tr.organics (wet, FILL)		_
Ι	2	4	3			Gray-Brown f-c SAND and Silt (wet, FILL)		
		4	3		7			
1	3	4	6			Red-Brown Silty CLAY, tr.sand (moist, stiff, CL)		
		5	6		11			
/	4	8	7			 Red-Brown Clayey SILT, little f-c Sand, tr.gravel		
7	_	8	11		15	 (moist, stiff, ML)		
1	5	6	11		04	 Red-Brown Silty CLAY, tr.sand (moist, hard, CL)		
	0	20	16		31			
1	6	12	14		0.4			
		20	22		34			
				\mid				
/	7	10	10					
ſ	7	10 12	10 15	\mid	22	(v.stiff)		
		12	15		22			
/	8	11	16			Brown-Gray Clayey SILT, some f-c Sand, tr.gravel		
	0	15	20		31	(moist, hard, ML)		
		.0	20					
						Boring Complete at 22.0'	No free standing water	
							reading obtained at	
							boring completion.	
	_							
							1	

DATE SJB SERVICES, INC. START HOLE NO. B-18 1/20/2014 SUBSURFACE LOG SURF. ELEV 588.5' ± 1/20/2014 **FINISH** SHEET 1 OF G.W. DEPTH See Notes 1 LOCATION: WESTWOOD COUNTRY CLUB PROJECT: PROPOSED IMPROVEMENTS AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER CLASSIFICATION 6/12 12/18 Ν 0/6 FT. NO. TOPSOIL Driller notes approx. 3" 1 3 3 3 3 6 Brown-Black Silty CLAY, tr.sand, tr.organics Topsoil 2 5 6 (moist, FILL) 5 7 11 3 3 5 Red-Brown Silty CLAY, tr.-little f-c Sand 5 5 4 10 (moist-wet, stiff, CL) Brown-Gray Clayey SILT, some f-c Sand, tr.gravel 4 7 11 14 12 25 (moist, v.stiff, ML) 5 7 11 15 23 12 10 Poor Recovery Sample #6 6 8 8 10 14 18 15 7 14 15 (hard) 17 21 32 20 8 5 7 34 41 50/0.4 25 Brown-Gray Silty CLAY, some f-c Sand, tr.gravel 9 4 8 (moist-wet, v.stiff, CL) 12 14 20 30 10 1 1 Becomes Red-Brown (wet, medium) 3 2 4 35 Boring Complete with Auger Refusal at 35.0' No free standing water reading obtained at boring completion. 40

N = NO. BLOWS T	O DRIVE 2-IN	ICH SPOON 12-IN	CHES WITH A 1	40 LB. PIN WT. F	ALLING 30-INCHE	ES PER BLOW	CLASSIFIED BY:	Geol	ogist
DRILLER:	A. JAKUI	BCZAK	D	RILL RIG TYPE :					
METHOD OF INVE	STIGATION	ASTM D-1586 U	SING HOLLOW	STEM AUGERS					

DATE START FINISH SHEET PROJECT:	1/23/2014 1/23/2014 1 OF 1 PROPOSED IMPR	SJB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>B-19</u> SURF. ELEV <u>592.3' ±</u> G.W. DEPTH <u>See Notes</u>
PROJ. NO.:	BE-13-192	AMHERST, NEV	N YORK
DEPTH SMPL FT. NO.	BLOWS ON SAMPLER	SOIL OR ROCK CLASSIFICATION	NOTES
	2 2 2 4 4 2 2 2	TOPSOIL Black-Brown Clayey SILT, some f-c Sand (moist, FILL) Yellow-Brown Silty CLAY, little Fine Sand	
_ 5 3	2 2 4 3 3	(moist-wet, medium, CL) Yellow-Brown Fine SAND, little-some Silt (moist-wet, v.loose, SM)	
	2 2 3 2 5		
-10 -5 -6	2 2 4 5 6 4 6	Red-Brown Silty CLAY, little f-c Sand, tr.gravel (moist-wet, medium, CL)	
	5 7 11	(stiff)	
157	7 8	Red-Brown f-m SAND, some-and Silt, little f-c Gravel	
	12 14 20 10 11 11	(moist, firm, SM)	
_ 20	13 11 24	Contains tr.clay	
		Boring Complete at 20.0'	No free standing water encountered at boring completion.
25			_
30			
35			
40			
DRILLER:	S. WOLKIEWIC		SSIFIED BY: Geologist

Т

Т

DATE START FINISH SHEET	Η Γ	-	1/2 1)14 2		S	JB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>B-20</u> SURF. ELEV <u>597.0' ±</u> G.W. DEPTH <u>See Notes</u>
PROJE PROJ.			PRC BE-1			MPR	OVEN	AMHERST, NEV	
DEPTH FT.		/IPL IO.	0/6	BLO 6/12	WS ON S 12/18	AMPLER N		SOIL OR ROCK CLASSIFICATION	NOTES
	∕∟	1	6	3					
	+	2	5 5	3 5		8		Black-Brown Clayey SILT, tr.sand, tr.organics (moist-wet, FILL)	
-//	′⊢	_	5	5		10		Red-Brown Clayey SILT, tr.sand (moist, stiff, ML)	
5		3	5	8					
/			7	6		15			
	∕∟	4	8	10				Red-Brown Silty CLAY, tr.sand (moist, v.stiff, CL)	
		_	12	8		22			
10 -/	∕⊢	5	6 6	6 6		12		Becomes Brown (stiff)	
_ '`	+	6	3	4		12			_
-/	$'\vdash$	-	5	6		9			
_									
15	+	7	4	7				Drown Crow Clovery Cli T little come f a Sand transvel	
-/	∕⊢	7	4 8	7		15		Brown-Gray Clayey SILT, little-some f-c Sand, tr.gravel (moist, stiff, ML)	
<u> </u>	-		0	12		15			_
_									
20									
	∕∟	8	12	13				(v.stiff)	_
	_		15	14		28			
_								-	
25									
		9	7	11					_
			12	12		23			
_									_
		_							_
30		0	3	7					_
-/	$'\vdash$		12	13		19		•	
35									
-/	/[1	WOH/2	2.0		WOH		Brown-Gray Silty CLAY, tr.sand (moist-wet, v.soft, CL)	WOH = Weight of
<u> </u> +	+	-						1	Hammer and Rods
									_
40									<u> </u>
D	RILLE	R:		S. W	/OLKI	EWICZ	7	NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS 	SSIFIED BY: Geologist

DATE START FINISH SHEET	1/21/2014 1/21/2014 2 OF 2	SJB SERVICES, INC. SUBSURFACE LOG SUBSURFACE LOG SURF. ELEV 597.0' ± G.W. DEPTH See Notes									
PROJECT: PROJ. NO.:	PROPOSED IMPR BE-13-192	VEMENTS LOCATION: WESTWOOD COUNTRY CLUB AMHERST, NEW YORK									
DEPTH SMPL FT. NO.	BLOWS ON SAMPLER	SOIL OR ROCK NOTES CLASSIFICATION									
	WOH/2.0 WOH	Gray Fine SAND, some-and Silt, tr.gravel WOH = Weight of (wet, v.loose, SM)									
		Boring Complete with Auger Refusal at 43.5' Free standing water recorded at 16.5' at boring completion.									
DRILLER:	S. WOLKIEWIC	ON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: <u>Geologist</u> DRILL RIG TYPE : <u>CME-550X</u> D-1586 USING HOLLOW STEM AUGERS									

DATE START <u>1/21/2014</u> FINISH <u>1/21/2014</u>

SHEET 1 OF 2

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. <u>B-21</u> SURF. ELEV <u>598.2' ±</u> G.W. DEPTH <u>See Notes</u>

тн		SMPL		BLO	WS ON S	AMPLER	SOIL OR ROCK	NOTES
		NO.	0/6	6/12	12/18	N	CLASSIFICATION	
	-//	1	1	1			Red-Brown Silty CLAY, tr.sand (moist, medium CL)	
	\mathbf{H}		3	2		4		Deer Deerver Comula
_	/	2	3	3 4		6		Poor Recovery Sample #2 and #3
; —	\mathbf{H}	3	6	4		0	Red-Brown Clayey SILT, little f-c Sand	#2 and #3
) —	-//	5	12	12		21	(moist, v.stiff, ML)	
—	\mathbf{H}	4	9	6		21		
	1/1	4	12	17		18	Contains tr.gravel	
_		5	25	24		10	-	
0 —	1/		35	37		59	(hard)	
_		6		50/0.1		REF	-	REF = Sample Spoon
	1	•		00,011				Refusal
_	1		1					
_	1		1					
5	1							
_	/	7	9	15			Becomes Brown	
	V		31	38		46	Becomes brown	
o								
	1/	8	3	2			Brown Silty CLAY, tr.sand (moist-wet, medium, CL)	
			3	3		5		
							_	
							_	
5	\square						_	
	/	9	1	1		2	Becomes Red-Brown (v.soft)	
_	Н		1	1		2		
_								
. —						\vdash		
_	H	10	3	4				
	1/	10	5	8		9	(stiff)	
-	۲.		Ť	Ť				
	1							
5	1		1					
_	7	11	12	23				
			22	28		45	Becomes Brown-Gray (hard)	
_								
_								
0								
			OWST				2-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CL DRILL RIG TYPE : CME-550X	ASSIFIED BY: Geologis

DATE START FINISH SHEET	1/21/2014 1/21/2014 2 OF 2	SJB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>B-21</u> SURF. ELEV <u>598.2' ±</u> G.W. DEPTH See Notes
PROJECT: PROJ. NO.:	PROPOSED IMPR BE-13-192	DVEMENTS LOCATION: WESTWOOD AMHERST, N	
DEPTH SMPL FT. NO.	BLOWS ON SAMPLER	SOIL OR ROCK CLASSIFICATION	NOTES
	31 46 50/0.4 REF	Brown-Gray f-c SAND and Silt, little f-c Gravel	
		Boring Complete with Sample Spoon Refusal at 41.4' and Auger Refusal at 41.5'	Free standing water recorded at 39.0' at boring completion.
50			
55			
60			
65			
70			
75			
80			
N = NO. BI DRILLER:	A. JAKUBCZAK		ASSIFIED BY: <u>Geologist</u>

DATE STAF FINIS SHEE	RT <u>12/12/2013</u> SH <u>12/12/2013</u>							JB SERVICES, INC. UBSURFACE LOG	HOLE NO. <u>B-22</u> SURF. ELEV <u>599.1' ±</u> G.W. DEPTH <u>See Notes</u>
PRO. PRO.		CT: NO.:				MPR	OVEN	IENTS LOCATION: WESTWOOD C	
DEPTH FT.		SMPL NO.	0/6	BLO	NS ON S. 12/18	AMPLER N		SOIL OR ROCK CLASSIFICATION	NOTES
	7	1	WOH	1				TOPSOIL	Driller notes approx. 11"
	/	2	1	2		2		Brown Silty CLAY, tr.sand (moist, v.soft, CL-CH)	Topsoil
	Ц	0	3	3		5		(medium)	WOH = Weight of Hammer and Rods
5	/	3	4	3 5		7		Becomes Red-Brown	Hammer and Rods
	/	4	4	5		10			_
	/	5	5 4	5 7		10		(stiff, CL)	_
10	И	0	8	7		15		Contains "and" f-c Sand, tr.gravel	
	/	6	12 8	7 8		15			No Recovery Sample #6 and #7
_									_
15									_
	/	7	13	8		47			_
			9	10		17			_
									_
20	/	8	4	5				Contains trlittle f-c Sand	_
_	Ц		4	6		9		Contains trintie 1-0 Sand	_
									_
25									_
	/	9	3 4	4		8		(medium)	_
_									
30									_
	7	10	2	3				Becomes Brown	
	Н		2	3		5			_
35		11	5	6				Brown f-c SAND and Clayey Silt, little f-c Gravel	-
	Ц		7	7		13		(moist, firm, SC-SM)	
_									-
40									
	N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: <u>Geologist</u> DRILLER: <u>T. FARRELL</u> DRILL RIG TYPE : <u>CME-550X</u> METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS								

DATE STAF FINIS SHEE PRO	RT SH ET		12/ 2 PRC		013 2 SED	•	S	JB SERVICES, INC. SUBSURFACE LOG	SUBBI SERVICES, INC.	
PRO	J. I		BE-1						AMHERST, N	
DEPTH FT.		SMPL NO.	0/6	BLO 6/12	WS ON S 12/18	AMPLER N		SOIL OR R CLASSIFIC/		NOTES
	Ζ	12	37	42	50/0.3	REF		Gray Highly Weathered SHAL	E Rock (wet)	
_										_
45								Boring Complete with Sample and Auger Refu		No free standing water reading obtained at boring completion.
50										-
55										
60										
65 										
70										-
75										
	DR	ILLER:		Τ.	FARF	RELL		NCHES WITH A 140 LB. PIN WT. FALLIN DRILL RIG TYPE : USING HOLLOW STEM AUGERS		ASSIFIED BY: Geologist

DATE	D	A-	ΙE	
------	---	----	----	--

START	12/12/2013
FINISH	12/12/2013
SHEET	1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. <u>B-23</u> SURF. ELEV <u>596.8' ±</u> G.W. DEPTH <u>See Notes</u>

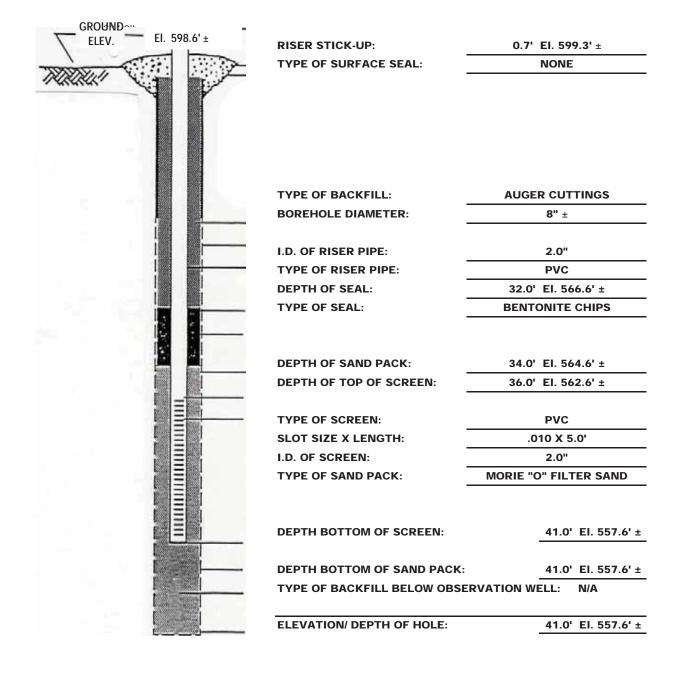
PTH		SMPL		BLO	WS ON S	AMPLER	SOIL OR ROCK	NOTES
г.		NO.	0/6	6/12	12/18	N	CLASSIFICATION	
	7	1	1	3			TOPSOIL	Driller notes approx. 11"
			3	3		6	Brown Silty CLAY, tr.sand (moist, medium, CL)	Topsoil
	7	2	3	2				
			4	5		6	-	
5	\Box	3	2	4			Becomes Red-Brown, Contains occasional Silt seams	
_			5	5		9	(stiff)	
	\Box	4	5	6			Red-Brown Clayey SILT, tr.sand, tr.gravel	-
			7	6		13	(moist, stiff, ML)	
	\square	5	7	8		10		
0			7	9		15		
Ŭ		6	8	7			-	
		5	10	10		17	(v.stiff)	
	Η							
							-	
5							-	
Ŭ		7	7	10			Becomes Brown-Gray	
		1	12	14		22		
			12	17				
20								
		8	11	10			Gray-Brown f-m SAND and Clayey Silt, tr.gravel	
	//	0	11	14		21	(moist, firm, SC-SM)	
				14		21		
							Boring Complete at 22.0'	No free standing water
25								encountered at boring
							-	completion.
								completion.
0								
_								
						$ \vdash $		
						\vdash		
10			I		I			1
			OWST		/E 2-IN		12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLA DRILL RIG TYPE : CME-550X	SSIFIED BY: Geologist

DATE START 1/22/2014 **SJB SE** FINISH 1/22/2014 **SUBSU**

2

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-24 SURF. ELEV 598.6' ± G.W. DEPTH See Notes


PROJ. NO.: <u>BE-13-192</u>					-		AMHERST, NEW YC	
ЕРТН		SMPL	<u> </u>		WS ON S			NOTES
т.	+	NO.	0/6	6/12	12/18	N	CLASSIFICATION TOPSOIL	
	-//	1	1	1		2	Black-Brown Clayey SILT, little f-c Sand, tr.gravel	
-	╀	0		2		2		
—	-//	2	2			-	(moist, FILL)	
	╀	3	5	2 4		5	Contains tr.wood fragments Red-Brown and Gray Silty CLAY, tr.sand, occasional	
5	$\frac{1}{2}$	3	-	4 5		0		
	╀╴	4	4	9 9		8	Silt partings (moist, medium, CL)	
	-//	4	9	9 8		18	(v.stiff)	
	╀╴	5	10	0 7		10	Red-Brown Clayey SILT, tr.sand, occasional Fine Sand	
	-//	Э	9	9		16		
10	╀	e	9 10	9 12		10	lenses (moist, v.stiff, ML)	
	-//	6	10	12		27	Contains tr.gravel	
	╀		15	15		21		
	-							
15	-							
10	+	7	4	7		\vdash	Brown-Gray Silty CLAY, little-some f-c Sand, tr.gravel	
	+/	1	4	7 11		21	(moist, v.stiff, CL)	
	╀		14			21		
	-							
20	-							
20		8	6	15				
_	-//	8	6			32	(hard)	
_	┦		17	22		32		
	-							
25	-							
20		0	10	4.4				
	-//	9	10 17	14 20		31		
	╀		17	20		31		
-	-						<u> </u>	
30	-						<u> </u>	
	+	10	3	3				
	1/	10	4	5		7	(medium)	
	╀		+					
	1		1			\vdash		
35	1							
_		11	14	17			Brown-Gray f-m SAND, some-and Silt, tr.gravel	
-	1/	1	21	28		38	(moist, compact, SM)	
-	ᡟ			20				
	1		1					
40	1		1					
	<u> </u>							
	N =	NO. BL	.ows t	0 DRIV	/E 2-IN(CH SPOON	12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED	BY: Geologist
	DR	ILLER		A. J	AKUP	BCZAK	DRILL RIG TYPE : CME-550X	

DATE START FINISH SHEET PROJECT:	1/22/2014 1/22/2014 2 OF 2 PROPOSED IMPRO	SJB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>B-24</u> SURF. ELEV <u>598.6' ±</u> G.W. DEPTH <u>See Notes</u>				
PROJECT. PROJ. NO.:	BE-13-192	AMHERST, NI					
DEPTH SMPL FT. NO.	BLOWS ON SAMPLER	SOIL OR ROCK CLASSIFICATION	NOTES				
12	47 50 50/0.2 REF	(v.compact)					
	Image: select	Boring Complete with Sample Spoon Refusal at 41.2' and Auger Refusal at 41.3'	No free standing water reading obtained at boring completion. 2" PVC Groundwater Observation Well installed at boring completion. Refer to installation log for details.				
80 N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: Geologist DRILLER: A. JAKUBCZAK DRILL RIG TYPE : CME-550X METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS							

MONITORING WELL COMPLETION RECORD

WELL NUMBER: B-24	SERVICES, INC.
PROJECT NAME: WESTWOOD CC	DRILLING METHOD: HOLLOW STEM AUGERS
PROJECT NUMBER: BE-13-192	GEOLOGIST: N/A
DRILLER: A. JAKUBCZAK	INSTALLATION DATE(S): 1/22/2014

STAF FINIS SHEE	DATE START <u>1/22/2014</u> FINISH <u>1/22/2014</u> SHEET <u>1</u> OF <u>2</u>)14 2		HOLE NO. <u>B-25</u> SURF. ELEV <u>594.8' ±</u> G.W. DEPTH <u>See Notes</u>		
PRO. PRO.			PRC BE-1			MPRO	OVE	MENTS LOCATION: WESTWOOD C	
DEPTH		SMPL		BLO	WS ON S	AMPLER		SOIL OR ROCK	NOTES
FT.		NO.	0/6	6/12	12/18	Ν		CLASSIFICATION	
_		1	1	1				TOPSOIL	Driller notes approx. 4"
	Ц		3	7		4		Red-Brown Clayey SILT, trlittle f-c Sand (moist, FILL)	Topsoil.
	/	2	4	5				Red-Brown Clayey SILT, little-some f-c Sand, tr.gravel	_
	Ц		9	9 9		14		(moist, stiff, ML)	
5	//	3	5	9 12		20		(v.stiff)	-
-	Н	4	11 9	12		20		1	–
-	//	4	9 10	11		17		1	-
	//	5	10	12		.,			-
10		0	11	11		23		Contains little f-c Sand	-
	7	6	6	10				1	7
	V		12	14		22		1	7
]	
15									
	/	7	12	14				1	
	Ц		16	17		30		-	
								4	
20								-	–
_ 20 _		8	7	11				4	-
			13	17		24		1	-
	Π							1	-
]	
25									
	/	9	10	13				Contains occasional boulder fragments	
	Ц		12	15		25		-	
-								4	4
30						┝──┨] –
	\vdash	10	2	6				1	-
	//		6	6		12		Brown-Gray Silty CLAY, tr.sand (moist-wet, stiff, CL)	-
	Н		-					1	-
_]	1
35	\square								
	/	11	WOH/2	2.0		WOH		Becomes Red-Brown (v.soft)	WOH = Weight of
	Ц					\square		4	Hammer and Rods
_								4	4
									1 –
40								1	<u> </u>
	N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: <u>Geologist</u> DRILLER: <u>S. WOLKIEWICZ</u> DRILL RIG TYPE : <u>CME-550X</u> METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS								

DATE START FINISH SHEET PROJECT:	1/22/2014 1/22/2014 2 OF 2 PROPOSED IMPR	SJB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>B-25</u> SURF. ELEV <u>594.8' ±</u> G.W. DEPTH <u>See Notes</u>
PROJ. NO.:	BE-13-192	AMHERST, N	
DEPTH SMPL FT. NO.	BLOWS ON SAMPLER	SOIL OR ROCK CLASSIFICATION	NOTES
	50/0.2 REF	Gray-Black Weathered SHALE Rock (moist-wet)	
_ ⁴⁵		Boring Complete with Sample Spoon Refusal and Auger Refusal at 40.2'	Free standing water recorded at 13.6' at boring completion.
50			REF = Sample Spoon Refusal
			Free standing water recorded at 13.6' at boring completion.
70			
80	+ $+$ $+$ $+$ $+$		–
DRILLER:	S. WOLKIEWIC		ASSIFIED BY: Geologist

 START
 1/23/2014

 FINISH
 1/23/2014

 SHEET
 1
 OF
 2

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO.	B-26
SURF. ELEV	594.1' ±
G.W. DEPTH	See Notes

РТН		SMPL		BLO	NS ON S	1	SOIL OR ROCK	NOTES
		NO.	0/6	6/12	12/18	N	CLASSIFICATION	
_		1	1	1			TOPSOIL	
_	Ц		2	3		3	Brown-Black Organic Clayey SILT, little Fine Sand	
_		2	4	5		40		
	\square	3	74	6 7		12	Red-Brown Silly CLAY, IT.Sand (moist, still, CL)	
5		3	8	7		15	Contains occasional Silt partings	
_	+	4	0	11		15		
_	/	4	10	5		21	(v.stiff)	
_		5	7	5		21		
0	/		10	9		15	(stiff)	
		6	2	4		-	Brown Clayey SILT, little f-c Sand, tr.gravel	
_	$\langle $		7	8		11	(moist, stiff, ML)	
5								
	Λ	7	5	8			Brown Silty CLAY, little f-c Sand (moist, v.stiff, CL)	
_	Ц		13	14		21		
_								
_								
20								
_		8	6	10		04	Brown Clayey SILT, little-some f-c Sand, tr.gravel	
_	Ц		11	11		21	(moist, v.stiff, ML)	
_								
25								
	7	9	8	11			_	
_			12	14		23	Becomes Brown-Gray	
_								
80								
		10	WOH	3			Red-Brown and Gray Silty CLAY, tr.sand	WOH = Weight of
			6	6		9	(moist, stiff, CL)	Hammer and Rods
_								
35								
_		11	8	11		0.4	Brown-Gray f-m SAND and Silt, trlittle f-c Gravel	
_	Н		13	10		24	(moist, firm, SM)	
_								
-0			$\left - \right $					
rU							I	
	N –		OWS TO	עואט כ	/E 2-IN(12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS	SIFIED BY: Geologist

DATE START FINISH SHEET PROJECT:	1/23/2014 1/23/2014 2 OF 2 PROPOSED IMPR	SJB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>B-26</u> SURF. ELEV <u>594.1' ±</u> G.W. DEPTH <u>See Notes</u>
PROJECT: PROJ. NO.:	BE-13-192	AMHERST, N	
DEPTH SMPL FT. NO.	BLOWS ON SAMPLER	SOIL OR ROCK CLASSIFICATION	NOTES
12	6 50/0.3 REF	Contains little SILT, tr.shale	
	O SU/O.3 INLI I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	Boring Complete with Sample Spoon Refusal and Auger Refusal at 40.8'	Free standing water recorded at 33.5' at boring completion. REF = Sample Spoon Refusal
80			
DRILLER:	S. WOLKIEWICZ		LASSIFIED BY: Geologist

DATE SJB SERVICES, INC. START 1/23/2014 HOLE NO. B-27 SUBSURFACE LOG SURF. ELEV 594.3' ± 1/23/2014 FINISH SHEET 1 OF G.W. DEPTH See Notes 1 SERVICES. PROPOSED IMPROVEMENTS LOCATION: WESTWOOD COUNTRY CLUB PROJECT: AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER 12/18 Ν CLASSIFICATION 0/6 6/12 FT. NO. 1 1 1 Brown-Black Silty CLAY, tr.sand (moist, FILL) 1 2 2 Brown Silty CLAY, tr.sand (moist, medium, CL) 2 2 3 5 2 2 3 3 3 5 Becomes Red-Brown 4 7 7 4 4 5 (stiff) 7 7 12 7 5 6 (v.stiff) 18 11 11 10 6 9 9 11 14 20 15 7 12 16 Becomes Brown-Gray, contains little f-c Sand (hard) 20 26 36 20 8 14 22 Brown-Gray Clayey SILT, some-and f-c Sand 26 48 (moist, hard, ML) 27 Boring Complete at 22.0' No free standing water reading obtained at 25 boring completion. 30 35 40 N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW Geologist CLASSIFIED BY: CME-550X DRILLER: A. JAKUBCZAK DRILL RIG TYPE : METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

DATE SJB SERVICES, INC. START 1/17/2014 HOLE NO. B-28 SUBSURFACE LOG 1/17/2014 SURF. ELEV 593.2' ± FINISH SHEET 1 OF G.W. DEPTH See Notes 1 SERVICES. PROPOSED IMPROVEMENTS LOCATION: WESTWOOD COUNTRY CLUB PROJECT: AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER CLASSIFICATION 0/6 6/12 12/18 Ν NO. FT. TOPSOIL 3 Driller notes approx. 6" 1 4 Brown-Black Clayey SILT, tr.sand, tr.organics 5 4 9 Topsoil 2 4 6 (moist, FILL) Red-Brown Silty CLAY, tr.sand (moist, stiff, CL) 5 7 11 3 3 9 Red-Brown Clayey SILT, little f-c Sand, tr.gravel 5 14 15 23 (moist, v.stiff, ML) 4 5 12 16 19 28 5 6 19 27 44 25 10 (hard) 17 6 9 23 29 40 15 7 6 13 Becomes Brown-Gray (v.stiff) 16 20 29 12 8 9 Red-Brown Silty CLAY, tr.sand (moist, v.stiff, CL) 19 27 15 20 Boring Complete at 20.0' No free standing water encountered at boring completion. 25 30 35 40

N = NO. BLOW	/S TO DRIVE 2-INCH SPOON 12-IN	CLASSIFIED BY:	Geologist		
DRILLER:	A. JAKUBCZAK	DRILL RIG TYPE :	CME-550X		
METHOD OF I	NVESTIGATION ASTM D-1586 U	SING HOLLOW STEM AUGERS			

DATE SJB SERVICES, INC. START HOLE NO. B-29 1/23/2014 SUBSURFACE LOG SURF. ELEV 594.5' ± 2/5/2014 **FINISH** 1 OF G.W. DEPTH See Notes SHEET 1 LOCATION: WESTWOOD COUNTRY CLUB PROJECT: PROPOSED IMPROVEMENTS AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER CLASSIFICATION 12/18 Ν 0/6 6/12 FT. NO TOPSOIL Driller notes approx. 3" 1 2 2 2 2 4 Brown-Black Clayey SILT, tr.sand, tr.organics Topsoil 2 3 4 (moist, FILL) Red-Brown Silty CLAY, tr.sand (moist, stiff, CL) 9 9 5 3 3 5 5 9 14 9 Red-Brown Clayey SILT, little-some f-c Sand, tr.gravel 4 8 11 13 15 24 (moist, v.stiff, ML) 5 15 16 (hard) 34 18 18 10 6 7 12 (v.stiff) 14 16 26 15 7 15 14 16 17 30 20 8 8 30 Gay-Brown f-m SAND, some-and Silt, little f-c Gravel 68 (moist, v.compact, SM) 38 36 25 9 10 17 Gray Fine SAND, some Silt (moist-wet, compact, SM) 28 25 45 Free standing water 30 10 Gray-Brown f-m SAND, some-and Silt, little f-c Gravel recorded at 19.3' prior 15 25 49 (moist, compact, SM) 24 27 to coring. NQ '2' Size Rock Core RUN #1: 33.5' - 38.5' Gray Shale Rock, medium hard, sound, thinly bedded 35 to bedded, occasional gypsum partings. REC = 82% RQD = 42% Boring Complete at 38.5' 40

N = NO. BLC	JWS TO DRIVE 2-IN	CLASSIFIED BY:	Geologist			
DRILLER:	S. WOLK	IEWICZ	DRILL RIG TYPE :	CME-550X		
METHOD O	F INVESTIGATION	ASTM D-1586	USING HOLLOW STEM AUGERS			

DATE SJB SERVICES, INC. START 1/17/2014 HOLE NO. B-30 SUBSURFACE LOG 1/17/2014 SURF. ELEV 594.8' ± FINISH 1 OF G.W. DEPTH See Notes SHEET 1 SERVICES. PROPOSED IMPROVEMENTS LOCATION: WESTWOOD COUNTRY CLUB PROJECT: AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER CLASSIFICATION 12/18 Ν 0/6 6/12 FT. NO. TOPSOIL Driller notes approx. 8" 1 2 3 3 5 6 Red-Brown Silty CLAY, tr.sand (moist, FILL) Topsoil 2 5 6 9 10 15 3 7 9 5 Red-Brown Clayey SILT, tr.sand (moist, v.stiff, ML) 12 15 21 4 6 11 15 16 26 5 9 17 Contains little-some f-c Sand (hard) 22 35 18 10 15 6 10 (v.stiff) 14 19 29 15 7 5 11 15 15 26 7 8 15 12 17 10 20 Boring Complete at 20.0' No free standing water encountered at boring 25 completion. 30 35 40 N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW Geologist CLASSIFIED BY: CME-550X DRILLER: A. JAKUBCZAK DRILL RIG TYPE : METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

DATE SJB SERVICES, INC. START HOLE NO. B-31 1/17/2014 SUBSURFACE LOG 1/17/2014 SURF. ELEV 592.5' ± FINISH 1 OF G.W. DEPTH See Notes SHEET 2 SERVICES. LOCATION: WESTWOOD COUNTRY CLUB PROJECT: PROPOSED IMPROVEMENTS AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER 12/18 Ν CLASSIFICATION 0/6 6/12 FT. NO TOPSOIL Driller notes approx. 6" 1 3 3 3 5 6 Orange-Brown mottled Silty CLAY, tr.sand Topsoil 2 4 5 (moist, medium, CL) Orange-Brown and Gray Silty CLAY, some Fine Sand 7 11 6 3 4 10 (moist, stiff, CL) 5 11 22 21 Becomes Red-Brown, contains tr.sand (v.stiff) 4 6 10 13 19 23 5 REF Contains little f-c Sand, tr.gravel, tr.boulder fragments REF = Sample Spoon 16 50/0.3 Refusal 10 (hard) 6 10 15 Contains some f-c Sand 23 26 38 15 7 20 No Recovery Sample #7 9 21 23 41 20 8 6 9 Becomes Brown-Gray (v.stiff) 15 24 17 25 Contains some f-c Sand (stiff) 9 5 4 7 11 11 30 Brown Silty CLAY, tr.sand, numerous Silt partings and 10 3 1 seams (moist-wet, stiff, CL) 8 10 11 35 Brown f-c SAND and Silt, tr.gravel, tr.shale REF 11 23 31 50/0.4 (moist, v.compact, SM) NQ '2' Size Rock Core RUN #1: 38.5' - 43.5' 40 N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: Geologist DRILLER: A. JAKUBCZAK DRILL RIG TYPE : CME-550X METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

DATE START FINISH SHEET PROJECT:	1/17/2014 1/17/2014 2 OF 2 PROPOSED IMPR	SJB SERVICES, INC. SUBSURFACE LOG Image: Services, inc. HOLE NO. B-31 SURF. ELEV 592.5' ± G.W. DEPTH See Notes DVEMENTS				
PROJ. NO.:		AMHERST, NEW YORK				
DEPTH SMPL FT. NO.	BLOWS ON SAMPLER	SOIL OR ROCK NOTES CLASSIFICATION				
		Gray SHALE Rock, medium hard, slightly weathered REC = 75% to sound, laminated to bedded, occasional gypsum RQD = Approx. 25% partings and seams				
		Boring Complete at 43.5' No free standing water reading obtained at boring completion.				
DRILLER:	A. JAKUBCZAK	ON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: <u>Geologist</u> DRILL RIG TYPE : <u>CME-550X</u> D-1586 USING HOLLOW STEM AUGERS				

DATE STAR FINIS SHEE PROJ	RT SH ET		1/3 1	POS)14 1 	IMPR(S	JB SERVICES, INC. BUBSURFACE LOG			
PRU	יז . נ	NO		13-18	92						
DEPTH		SMPL			1	AMPLER		SOIL OR ROCK CLASSIFICATION	NOTES		
FT.	7	NO. 1	0/6 3	6/12 3	12/18	N		TOPSOIL	Driller notes approx. 3"		
_	/ŀ	1	2	2		5		Brown-Black Silty CLAY, tr.sand, tr.organics	Topsoil		
-	7	2	4	3		Ŭ		(moist, FILL)			
	/ī		3	5		6			-		
5	7	3	5	8				Red-Brown Clayey SILT, tr.sand (moist v.stiff, ML)	1		
-]	\square		10	13		18					
_	Λ	4	6	7							
_	Ц		9	10		16					
		5	8	10				(moist-wet)			
10	Ц	0	11	12		21			_		
_		6	7 13	10		22		Contains tr.gravel			
	4		13	15		23		•	-		
_	ŀ							4	-		
15	ŀ							+			
_ `` _	7	7	6	12					-		
	/t	-	12	16		24		Becomes Brown	-		
									-		
									1]		
20											
_	Λ	8	5	7				Brown Silty CLAY, tr.sand (moist-wet, v.stiff, CL)			
_	Ц		11	10	<u> </u>	18			_		
_											
25	-							+			
20		9	17	28				Brown-Gray f-m SAND and Silt, tr.gravel	-		
—	/ŀ	9	27	20		55		(moist, v.compact, SM)	REF = Sample Spoon		
-	\square								Refusal		
								1			
30											
	4	10	50/0.4			REF		Gray-Brown SHALE Rock fragments (moist)			
_											
_	╞				 			Boring Complete with Sample Spoon Refusal at 30.4'	No free standing water		
	╞							and Auger Refusal at 30.5'	encountered at boring		
_ 35 _									completion.		
_	╞							4	-		
_	╞					┝──┤		1	-		
-	╞							1	-		
40								1	-		
								•	J		
	N =	NO. BL	OWST						SSIFIED BY: Geologist		
		LLER:				EWICZ		DRILL RIG TYPE : CME-550X			
	ME	THOD C	F INVE	STIGA	TION	ASTM D	D-1586 I	USING HOLLOW STEM AUGERS			

 START
 1/24/2014

 FINISH
 1/24/2014

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. <u>B-33</u> SURF. ELEV <u>592.9' ±</u> G.W. DEPTH <u>See Notes</u>

		10.:	BE-				AMHERST, NEW YORK
ЕРТН		SMPL			NS ON S		SOIL OR ROCK NOTES
T.		NO.	0/6	6/12	12/18	N	
_	-1/1	1	3	1		2	TOPSOIL Red Brown and Black Clavey SILT Little f a Sand
-	+		1	1		2	Red-Brown and Black Clayey SILT, little f-c Sand
	-1/1	2	6	5		10	(moist, FILL) Brown Silty CLAY, tr.sand (moist, stiff, CL)
	╇		5	5		10	
5	-//	3	2	4			Red-Brown f-c SAND, some-and Silt, tr.gravel
_	+		7	7		11	(moist-wet, firm, SM)
_	-1/1	4	10	10			Red-Brown Clayey SILT, some-and f-c Sand, little f-c
_	+		12	13		22	Gravel (moist, v.stiff, ML)
. –	4/	5	11	13		05	
10			12	14		25	Contains little f-c Sand
_	/	6	8	11			I
_			12	15		23	\dashv $ $
	4						
	4						
15							
_	4/	7	8	14			
			13	13		27	
	1/	8	22	34			Becomes Brown (hard)
20			38	27		72	
_							
							Boring Complete at 20.0' No free standing water
							encountered at boring
							completion.
25							
_							
30							
_							
_							
_							
_							
35							
_							
_							
_							
_							
40							
							12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: Geologist
	DR	ILLER:		S. W	OLKI	EWICZ	DRILL RIG TYPE : CME-550X

 START
 12/12/2013

 FINISH
 12/12/2013

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-34 SURF. ELEV 593.4' ± G.W. DEPTH See Notes

EPTH		SMPL		BLO	NS ON S	AMPLER	SOIL OR ROCK	NOTES
т.		NO.	0/6	6/12	12/18	N	CLASSIFICATION	
	/	1	1	3			TOPSOIL	Driller notes approx. 12"
	\square		4	4		7	Red-Brown and Black Silty CLAY, tr.sand (moist, FILL)	Topsoil
	1/	2	11	4			Brown Clayey SILT, tr.sand (moist, stiff, ML)	
	\square		5	6		9		
5	1/	3	6	8			Red-Brown Silty CLAY, tr.sand, occasional Silt	
	Ц		7	7		15	partings (moist, stiff, CL)	
	/	4	10	7			Red-Brown Clayey SILT, trlittle f-c Sand, tr.gravel	
	Ц		8	12		15	(moist, stiff, ML)	
	1/	5	10	12				
10	Ц		13	13		25	(v.stiff)	
	1/	6	15	10				
	Ц		12	15		22		
15				10				
	/	7	11	12		07	Gray-Brown f-c SAND and Clayey Silt, little f-c Gravel	
	\square		15	17		27	(moist, firm, SC-SM)	
						-	<u> </u>	
							<u> </u>	
20	\square	0	7	7			-	
	/	8	7	7		00	<u> </u>	
	Н		15	18		22		
								-
25								
		9	41	50/0.3		REF	Brown-Gray f-m SAND and Silt, tr.gravel	REF = Sample Spoon
	Ĺ	5		50/0.3			(moist, v.compact, SM)	Refusal
	1							
30	1							
		10	50/0.4			REF	-	
	1							
	1						Boring Complete with Sample Spoon Refusal and	No free standing water
_]						Auger Refusal at 31.4'	encountered at boring
35]							completion.
]							
40								
	N			מיוסס ה			I2-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLA	SSIFIED BY: Geologist

START	12/13/2013		
FINISH	12/13/2013		
SHEET	1 OF 1		

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-35 SURF. ELEV 593.0' ± G.W. DEPTH See Notes

ртн		SMPL		BLOV	NS ON S	AMPLER	SOIL OR ROCK	NOTES	
-		NO.	0/6	6/12	12/18	N	CLASSIFICATION		
	17	1	1	3			TOPSOIL	Driller notes approx. 7"	
-	1/		3	2		6	Orange-Brown and Gray Mottled Clayey SILT, tr.sand	Topsoil	
	17	2	3	3			(moist, medium, ML)		
	1/		4	5		7	Becomes Brown		
; —	17	3	7	8					
	1/1		11	11		19	Red-Brown Silty CLAY, tr.sand (moist, v.stiff, CL)		
_	17	4	10	10			-		
_	1/		9	11		19	-		
		5	6	10		10	-	-	
0 —	1/1	0	11	13		21	Red-Brown Clayey SILT, little f-c Sand (moist, v.stiff, ML)		
~ <u> </u>	┢	6	7	12					
—	1/1	U	14	16		26			
—	+		14	10		20			
_							\neg		
5							\neg		
_	\vdash	7	11	13			Contains some fiel Sand little Crowel		
_	/	7	11 15	13		20	Contains some f-c Sand, little Gravel		
	H		10	CI		28			
_			<u> </u>					1	
0	\square	~				DEE			
		8	50/0.4			REF		No Recovery Sample #8	
			<u> </u>				(moist, v.compact, SM)		
							_	REF = Sample Spoon	
_ —							_	Refusal	
5									
	М	9	39	50/0.1		REF	Becomes Brown-Gray, contains tr.boulder fragments		
_							(v.compact)		
_			<u> </u>				_		
_			 	\mid			_		
0			ļ				_		
		10	50/0.2			REF			
			<u> </u>				_		
			<u> </u>						
_			 				Boring Complete with Sample Spoon Refusal at 30.2	No free standing water	
5							and Auger Refusal at 32.5'	reading obtained at	
_								boring completion.	
_									
_									
0	1								
	N =	NO. BL	OWS TO	D DRIV	E 2-INC	CH SPOON 1	2-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASS	IFIED BY: Geologist	

STA FINIS SHE	DATE START <u>1/30/2014</u> FINISH <u>1/30/2014</u> SHEET <u>1</u> OF <u>1</u> PROJECT: PROPOSED IMPR						S	JB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>B-36</u> SURF. ELEV <u>593.3' ±</u> G.W. DEPTH <u>See Notes</u>			
PRO			BE-			IMPR	OVEN	/EMENTS LOCATION: WESTWOOD COUNTRY CLUB AMHERST, NEW YORK				
DEPTH FT.		SMPL NO.	0/6	BLO 6/12	WS ON S	AMPLER		SOIL OR ROCK CLASSIFICATION	NOTES			
	/	1	2	3 3		6			Driller notes approx. 3"			
_	17	2	6	6		0		Brown Silty CLAY, tr.sand, tr.organics (moist, FILL) Red-Brown Silty CLAY, tr.sand (moist, stiff, CL)				
5	Ц	3	7 5	8 6		13			–			
	1/1	5	5	7		11			-			
	17	4	7	7					–			
_	Н	5	8 6	7 5		15		Red-Brown Clayey SILT, trlittle f-c Sand				
10	\square		8	12		13		(moist, stiff, ML)				
_	\cdot	6	12 17	15 19		32		(hard)	_			
_	Н		17	19		32			-			
]			
15	H	7	15	17					_			
	\mathbf{V}	-	21	18		38		Becomes Brown				
_									_			
20	-								-			
	17	8	5	5				Brown-Gray f-m SAND, some-and Silt, tr.gravel				
_	Ц		7	31		12		(moist, firm, SM)	_			
_									-			
25	Ц											
	\cdot	9	18 27	21 41		48		(compact)	REF = Sample Spoon			
_	Ħ		21	41		40			Refusal			
									1]			
30	H	10	50/0.4			REF		Brown-Gray SHALE Rock fragements (wet)	_			
	Ń		0.0.4									
_								Boring Complete with Sample Spoon Refusal at 30.4'	Free standing water			
35	$\left \right $							and Auger Refusal at 31.0'	recorded at 28.0' at boring completion.			
	1							1				
_	$\left \right $								_			
_	$\left \right $							+	-			
40								1				
	DR	ILLER:		S. V	VOLK	EWICZ		NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLA DRILL RIG TYPE : CME-550X USING HOLLOW STEM AUGERS	SSIFIED BY: Geologist			

DATE START <u>1/16/2014</u> FINISH <u>1/17/2014</u> SHEET <u>1</u> OF <u>1</u> PROJECT: PROPOSED IMPR							S	JB SERVICES, INC. UBSURFACE LOG	SERVICES, INC.	HOLE NO. <u>B-37</u> SURF. ELEV <u>592.1' ±</u> G.W. DEPTH <u>See Notes</u>			
PRO PRO			PRC BE-1			MPR	OVEN	EMENTS LOCATION: WESTWOOD COUNTRY CLUB AMHERST, NEW YORK					
DEPTH		SMPL			I	AMPLER		SOIL OR	NOTES				
FT.		<u>NO.</u>	0/6 2	6/12 2	12/18	N		CLASSIFIC TOPS		Driller notes approx. 8"			
	//	I	2	4		5		Brown-Black Silty CLAY, tr.sa		Topsoil			
	//	2	4	4									
	V		5	6		9				_			
5	1	3	3	6				Red-Brown Silty CLAY, tr.san	nd, occasional Silt	_			
	V		8	12		14		partings (moist, stiff, CL)					
	$ \Lambda $	4	10	12				Red-Brown Clayey SILT, tr.sa	and (moist, v.stiff, ML)	=			
	Ц		15	17		27				_			
	/	5	9 17	14 18		31		Contains some f-c Sand (hard	d)	-			
10		6	17	13		31							
		0	15	14		28		(v.stiff)	-				
	ľ		10										
	11												
15										-			
	И	7	29	50/0.4		REF		Gray-Brown f-m SAND and S	ilt, tr.gravel, tr.boulder	REF = Sample Spoon			
								fragments (moist, v.compact,	SM)	Refusal			
										_			
20		8	50/0.4			REF				No Recovery Sample #9			
_		0	30/0.4										
_	Ц	9	50/0.0			REF							
								Boring Complete wit	th Sample Spoon	Free standing water			
25								and Auger Ref	usal at 22.5'	recorded at 20.0' at			
_										boring completion.			
	┥╽												
30	$\left\{ \right\}$												
	1												
	11									=			
] [-			
35										-			
	$\left\{ \right\}$		-							-			
	$\left\{ \right\}$		┟──┤										
40										-			
-													

N = NO. BLOWS	S TO DRIVE 2-INCH SPOON 12-INCH	ES WITH A 140 LB. PIN WT. FALLING	G 30-INCHES PER BLOW	CLASSIFIED BY:	Geologist
DRILLER:	A. JAKUBCZAK	DRILL RIG TYPE :	CME-550X		
METHOD OF IN	IVESTIGATION ASTM D-1586 USIN	IG HOLLOW STEM AUGERS			

START	1/	23/20	14
FINISH	1/	23/20	14
SHEET	1	OF	1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO.	B-38
SURF. ELEV	592.4' ±
G.W. DEPTH	

ЕРТН		SMPL		BLO	WS ON S	AMPLER	SOIL OR ROCK NOTES
т.		NO.	0/6	6/12	12/18	N	CLASSIFICATION
_	Λ	1	3	3			Black-Brown Clayey SILT, little f-c Sand, tr.gravel
4	4		3	3		6	(moist, FILL)
	/	2	2	4			Brown Silty CLAY, tr.sand (moist, stiff, CL)
{	4	0	5	5		9	
5	∕⊦	3	3	5		10	(moist-wet)
-4	-	4	8	12		13	
	∕⊦	4	13	14 15		27	(v.stiff)
	\rightarrow	F	13 17	15		21	
10	∕ŀ	5	7	14		21	<u> </u>
" 		6	2	4		21	-
-	/⊦	0	6	7		10	
-	╈			'		10	-
	ŀ						━┥
15	ŀ						
	7	7	5	17			Brown-Gray Clayey SILT, some f-c Sand, tr.gravel
	/†		26	24		43	(moist, hard, ML)
Ť							
	ſ						
20							
	Λ	8	8	17			Brown-Gray f-c SAND, some-and Silt, tr.gravel
	/		21	19		38	(moist, compact, SM)
25			<u> </u>				
	╞						Boring Complete with Auger Refusal at 24.0' No free standing water
_	┝						encountered at boring
_	┢						completion.
30	ŀ						
	ŀ						-
\neg	┢						
	ŀ						
\neg	ŀ						
35	ŀ						
	ŀ						
Η	ľ						-
	ſ						
	ſ						
10							
	_						

DATE SJB SERVICES, INC. START 1/16/2014 HOLE NO. B-39 SUBSURFACE LOG SURF. ELEV 592.0' ± 1/16/2014 FINISH SHEET 1 OF G.W. DEPTH See Notes 1 SERVICES. PROPOSED IMPROVEMENTS LOCATION: WESTWOOD COUNTRY CLUB PROJECT: AMHERST, NEW YORK PROJ. NO.: BE-13-192 SOIL OR ROCK NOTES DEPTH SMPL BLOWS ON SAMPLER CLASSIFICATION 0/6 6/12 12/18 Ν NO. FT. TOPSOIL 3 Driller notes approx. 4" 1 3 Brown-Black Silty CLAY, tr.sand, tr.organics 2 3 5 Topsoil 2 7 9 (moist, FILL) Brown Silty CLAY, tr.sand (moist, v.stiff, CL) 10 19 10 3 6 7 5 10 8 17 Becomes Red-Brown 4 4 7 8 9 15 (stiff) 5 9 10 Contains occasional Silt seams (v.stiff) 9 17 8 10 Red-Brown f-c SAND and Silt, tr.gravel 4 5 6 (moist-wet, loose, SM) 5 9 10 REF = Sample Spoon Refusal 15 Brown-Gray f-m SAND and Silt, tr.gravel, tr.boulder 38 7 21 79 fragments (moist, v.compact, SM) 41 49 REF 8 50/0.1 Boring Complete at 18.1' 20 No free standing water encountered at boring completion. 25 30 35

N = NO. BLOWS	S TO DRIVE 2-INCH SPOON 12-INCH	ES WITH A 140 LB. PIN WT. FALLIN	NG 30-INCHES PER BLOW	CLASSIFIED BY:	Geologist
DRILLER:	S. WOLKIEWICZ	DRILL RIG TYPE :	CME-550SE		
METHOD OF IN	IVESTIGATION ASTM D-1586 USIN	IG HOLLOW STEM AUGERS		_	

40

DATE STAF FINIS SHEE	ART 1/29/2014 ISH 1/29/2014 EET 1 OF 1							SJB SERVICES, INC. SUBSURFACE LOG HOLE NO. B-40 SUBSURFACE LOG SURF. ELEV 588.9' ± G.W. DEPTH See Notes PROVEMENTS LOCATION: WESTWOOD COUNTRY CLUB						
PRO			BE-			INFR	OVEN	AMHERST, NE						
DEPTH FT.		SMPL NO.	0/6	BLO 6/12	WS ON S 12/18	AMPLER N		SOIL OR ROCK CLASSIFICATION	NOTES					
	\langle	1	2	3 2		5		TOPSOIL Black Organic Silty CLAY, tr.sand (moist, FILL)	-					
	7	2	3	3				Becomes Red-Brown	_					
5	/	3	6 4	7 7		9			No Recovery Sample #3					
	Ц	4	10 8	11 8		17		Red-Brown Silty CLAY, trlittle f-c Sand] _					
_	Ζ	4	8 7	10		15		(moist, stiff, CL)						
10	\square	5	17 16	15 18		31		(hard)	_					
	/	6	15	18				Red-Brown f-m SAND and Silt, tr.gravel						
			21	19		39		(moist, compact, SM)						
									_					
15	/	7	18	21				Recompose Brown Crow	–					
_	Ц		27	33		48		Becomes Brown-Gray	_					
_									_					
20		8	22	23					_					
_	Ζ	0		50/0.4		58		(v.compact)						
			-					Boring Complete with Sample Spoon Refusal at 21.9	Free standing water					
25								and Auger Refusal at 22.0'	recorded at 19.0' at					
									boring completion.					
_									_					
30									_					
									_					
_								-						
35									–					
									_					
								-						
								*	_					
40			I		I			<u> </u>	<u> </u>					
	DR	ILLER:		S. W	/OLKI	EWICZ	2	NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLA DRILL RIG TYPE : <u>CME-550X</u> JSING HOLLOW STEM AUGERS	SSIFIED BY: Geologist					

DATE STAF FINIS SHEE	ART 1/28/2014 ISH 1/28/2014 SJB SERVICES, INC. SUBSURFACE LOG SET 1 OF 1								HOLE NO. B-41 SURF. ELEV 590.3' ± G.W. DEPTH See Notes
PRO. PRO.			PRC BE-			IMPR	OVEN	IENTS LOCATION: WESTWOOD (AMHERST, NE	
DEPTH FT.		SMPL NO.	BLOWS ON SAMPLER SOIL OR ROCK 0/6 6/12 12/18 N CLASSIFICATION						NOTES
		1	4	5 10		12		TOPSOIL Brown Silty CLAY, tr.sand, tr.organics (moist, FILL)	Driller notes approx. 3"
	И	2	5 5	4		9		Brown Silty CLAY, tr.sand (moist, stiff, CL)	
5	7	3	5	5		12		Contains occasional Silt partings	
_	1	4	7 14 7	9 8		12		(v.stiff)	
	1	5	4	5				(moist-wet, stiff)	
10		6	5 3	7 4		10		Contains little f-c Sand, tr.gravel	
	Н		5	8		9			_
15									1 -
	7	7	17 47	31		78		Brown-Gray f-m SAND, some-and Silt, tr.gravel (moist, v.compact, SM)	
_	Ĺ			50/0.3		70			
20	\square	8	18 35	28 44		63			
								Boring Complete at 20.0'	No free standing water encountered at boring completion.
25									
_									
_									
30									
									_
35									7
]
									_
40									-
	DR	ILLER:		S. W	/OLKI	EWICZ	2	NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLA DRILL RIG TYPE : CME-550X USING HOLLOW STEM AUGERS	SSIFIED BY: Geologist

FINI	ATE TART <u>12/17/2013</u> NISH <u>12/17/2013</u> HEET <u>1</u> OF <u>1</u>							JB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>B-42</u> SURF. ELEV <u>601.1' ±</u> G.W. DEPTH See Notes		
PRO PRO			PRC BE-1			MPR	OVEN	AENTS LOCATION: WESTWOOD AMHERST, NE			
DEPTH	Π	SMPL		BLO\	NS ON S	AMPLER	NOTES				
FT.	Ц	NO.	0/6	6/12	12/18	Ν		CLASSIFICATION			
		1	1	1		4			Driller notes approx. 13"		
	\mathbf{H}	2	3 5	3 6		4		Black Clayey SILT, little Fine Sand (moist, FILL)	- Topsoil		
	1/1	2	7	9		13		Brown Silty CLAY, tr.sand (moist, stiff, CL)	—		
5	17	3	9	8					—		
_	V		8	10		16		(v.stiff)			
	17	4	12	8				ļ	No Recovery Sample #4		
	Ц		9	9		17		4			
	-//	5	8 12	11 13		22		(moist-wet)	_		
10		6	12	13		23					
	1/1	0	12	12		22		1	—		
	ŕ		12	12							
	11								—		
15											
_	Λ	7	9	9				Becomes Red-Brown, contains little f-c Sand			
	$\boldsymbol{\mu}$		10	10		19		becomes rea brown, contains intic r o cana	_		
	┥╽								_		
20	┥╽							•	_		
20		8	8	9				•	—		
	1/1	0	8	12		17			—		
] [Boring Complete at 22.0'	No free standing water		
25									encountered at boring		
_	┥╽								completion.		
	┥╽		$\left - \right $					4			
	┥┝		$\left - \right $					4	-		
30	1							1			
	1							1	-		
_] []			
								ļ			
	$\left \right $							4	_		
35	┥╽							4			
	┥╽		$\left - \right $					4			
	┥╽		┟──┤					1			
	1							1			
40	1							1			
	DRI	LLER:		Τ.	FARF	RELL		NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CL 	ASSIFIED BY: <u>Geologist</u>		

STAF FINIS SHE	DATE START <u>1/30/2014</u> FINISH <u>1/31/2014</u> SHEET <u>1</u> OF <u>1</u> PROJECT: PROPOSED IMPRO							JB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>B-43</u> SURF. ELEV <u>593.2' ±</u> G.W. DEPTH <u>See Notes</u>	
PRO PRO			PRC BE-			IMPR	OVEN	AMHERST, NEV		
DEPTH FT.		SMPL NO.	0/6	BLO 6/12	WS ON S	AMPLER N		SOIL OR ROCK CLASSIFICATION	NOTES	
_		1	2 5	4 6		9		TOPSOIL Black Organic Clayey SILT, little f-c Sand (moist, FILL)	Driller notes approx. 6" Topsoil	
_	/	2	4	6 7		13		Brown Silty CLAY, tr.sand (moist, stiff, CL)		
5	//	3	5	8				Becomes Red-Brown (v.stiff)		
-	/	4	10 6	12 6		18			_	
	И	5	9 2	14 6		15		(stiff) Red-Brown Clayey SILT, little-some f-c Sand, trlittle		
10	\square	5	7	11		13		f-c Gravel (moist, stiff, ML)		
-	\mathcal{N}	6	5 8	5 9		13			_	
_										
15										
_	\mathcal{A}	7	6 48	27 50		75		Becomes Brown-Gray (hard)	_	
_										
20										
		8	8 12	13 15		25		Contains little f-c Sand (v.stiff)		
_	ľ		12			20		•		
25									-	
–		9	10 16	12 17		28			Free standing water	
	ľ			17		20			recorded at 20.0' prior to	
30	-								coring. NQ '2' Size Rock Core	
 								Gray SHALE Rock, medium hard, sound, thinly bedded	RUN #1: 30.0' - 35.0'	
_								to bedded, grades predominantly gypsum at	REC = 60%	
35								approximately 34.0'	RQD = 40%	
-				<u> </u>				Boring Complete at 35.0'	Free standing water recorded at 10.0' after	
40								1	coring.	
	40 N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: Geologist DRILLER: A. JAKUBCZAK DRILL RIG TYPE : CME-550X METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS									

DATE START FINISH SHEET PROJE PROJ.	CT:	1/* 1		014 1 SED	IMPR(S	UB SERVICES, INC. UBSURFACE LOG MENTS LOCATION: WESTWOOD CO AMHERST, NEW	
DEPTH	SMPL		BLO	WS ON S	AMPLER		SOIL OR ROCK	NOTES
FT.	NO.	0/6	6/12	12/18	Ν		CLASSIFICATION	
	1	3	3				TOPSOIL	Driller notes approx. 6"
		4	7		7		Red-Brown and Black Silty CLAY, tr.sand (moist, FILL)	Topsoil
	2	7	8				Red-Brown Clayey SILT, tr.sand, occasional Fine Sand	_
		4	10		12		lenses (moist, stiff, ML)	_
_ 5 _/	3	5	8				Red-Brown Silty CLAY, tr.sand (moist, v.stiff, CL-CH)	
		10	12		18			_
_//	4	11	14					_
<u> </u>	-	17	8		31		Contains occasional Silt seams (hard)	
10 -//	5	11 8	10 10		18		(v.stiff)	
- " - /	6	20	14		10		•	Poor Recovery Sample #6
\dashv		15	17		29			
<u> </u>		10	17		20			
-								
15							1	-
	7	18	40				Brown-Gray f-m SAND, some Silt, tr.gravel, tr.boulder	REF = Sample Spoon
		39	42		79		fragments (moist, v.compact, SM)	Refusal
	8	44	50/0.2		REF			
20							Boring Complete with Sample Spoon Refusal at 18.7	No free standing water
								encountered at boring
								completion.
_								
25							•	
								-
							1	-
		1					1	
]	
30								
	L						-	
	L	 					4	
	<u> </u>	<u> </u>						_
35	<u> </u>						•	–
—							-	-
	<u> </u>						4	-
—							1	-
40	<u> </u>						1	-
N = DR	RILLER:		S. W	OLKI	EWICZ	-	NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLA DRILL RIG TYPE : <u>CME-550SE</u> USING HOLLOW STEM AUGERS	SSIFIED BY: Geologist

DATE STAF FINIS SHEE	ART2/4/2014SJB SERVICES, INC. SUBSURFACE LOGSUBSURFACE LOGSUBSURF. ELE							HOLE NO. <u>B-45</u> SURF. ELEV <u>591.9' ±</u> G.W. DEPTH <u>See Notes</u>			
PRO			BE-1				OVEN	AMHERST, NEW YORK			
DEPTH FT.		SMPL NO.	0/6	BLO 6/12	WS ON S	AMPLER		SOIL OR ROCK CLASSIFICATION	NOTES		
	7	1	3	3	12/10			TOPSOIL	Driller notes approx. 7"		
	Δ		5	5		8		Brown-Black Silty CLAY, tr.sand, tr.organics	Topsoil		
		2	4	5				(moist, FILL)	1		
	4	3	6 3	9 6		11		Red-Brown Silty CLAY, tr.sand (moist, stiff, CL)	_		
5		3	3 9	10		15					
	+	4	5	8		15			-		
	Λţ		12	15		20		(v.stiff)			
	7	5	3	4				(wet, medium)			
10	Д		4	3		8					
_		6	3	3					_		
_	Н		4	5		7			_		
									_		
15								•			
	7	7	4	4							
			4	5		8					
_											
									REF = Sample Spoon		
20		8	50/0.4			REF		Gray f-m SAND, some-and Silt, tr.gravel (moist, SM)	Relusal		
		0	50/0.4						-		
									NQ '2' Size Rock Core		
25		9	50/0.0			REF					
_								Gray SHALE Rock, medium hard, sound, thinly bedded			
_								to bedded, occasionally gypsum seams.	REC = Approx. 50% RQD = Approx. 20%		
_									RQD = Approx. 20%		
30											
								Boring Complete at 29.5'	Free standing water		
									recorded at 15.0' prior		
								•	to coring.		
	╞								Free standing water		
35	╞								recorded at 10.0' after		
								4	coring.		
								1	-		
								1	-		
40]			
	DRI	LLER:		A. J	AKUE	BCZAK		NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS DRILL RIG TYPE : <u>CME-550X</u> USING HOLLOW STEM AUGERS	SSIFIED BY: Geologist		

DATE START <u>1/28/2014</u> FINISH <u>1/28/2014</u> SHEET <u>1</u> OF <u>1</u> PROJECT: PROPOSED IMPRO)14 1	-	S	JB SERVICES, INC. UBSURFACE LOG	HOLE NO. <u>B-46</u> SURF. ELEV <u>591.6' ±</u> G.W. DEPTH <u>See Notes</u>
PRO PRO			PRC BE-1			IMPR	OVEN	IENTS LOCATION: WESTWOOD C	
DEPTH FT.		SMPL NO.	0/6	BLO	WS ON S	AMPLER		SOIL OR ROCK CLASSIFICATION	NOTES
FI.	7	NO.	4	4	12/18	N		TOPSOIL	
_	\square		4	4		8		Black Organic Silty CLAY, tr.sand (moist, FILL)	
_	/	2	4	6				Red-Brown Silty CLAY, tr.sand (moist, stiff, CL-CH)	_
5	\mathbf{H}	3	7 7	8 7		13			_
	//	0	6	7		13			
_	17	4	11	10				(v.stiff)	
_	Ц		12	13		22		(v.sui)	
10		5	11 12	13 11		25		Contains tr.gravel	_
10		6	2	4		20		(moist-wet, medium)	-
	1/1	0	4	4		8			
_	Π								
	┤╎								
15		7	10	20				Red-Brown f-m SAND and Silt, tr.gravel	_
	//	7	38	20 33		58		(moist, v.compact, SM)	
_	ĥ		00	00		00			
_	17	8	21	33					
20	\boldsymbol{V}		42	44		75			
	┥┝							Boring Complete at 20.0'	No free standing water
	$\left\{ \right\}$							Bonny Complete at 20.0	No free standing water encountered at boring
	11							•	completion.
25] [
_	┥┝								_
	┥┝								
30									
_	11								
								-	_
	┥┝								_
35	$\left\{ \right\}$					$\left - \right $		+	-
_ 00 _	1								
	1							1	-
_									
	┥╽								_
40	<u> </u>				[1
		NO. BLO LLER:	OWS TO			CH SPO EWICZ		NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS	SSIFIED BY: Geologist
	ME	THOD O	F INVE	STIGA	TION	ASTM [D-1586 I	USING HOLLOW STEM AUGERS	

 START
 1/31/2014

 FINISH
 2/3/2014

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO.	B-47
SURF. ELEV	594.9' ±
G.W. DEPTH	See Notes

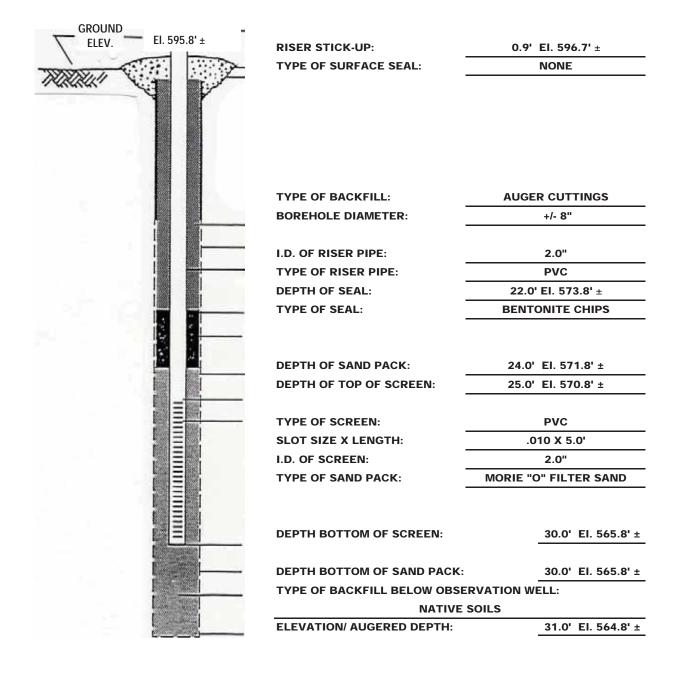
EPTH	Π	SMPL		BLO	WS ON S	AMPLER	SOIL OR ROCK	NOTES
т.		NO.	0/6	6/12	12/18	N	CLASSIFICATION	
	7	1	4	5			TOPSOIL	Driller notes approx. 6"
	1/1		6	6		11	Red-Brown Silty CLAY, tr.sand, tr.organics (moist, FILL)	
		2	3	7			Red-Brown Silty CLAY, tr.sand (moist, stiff, CL)	
	V		8	10		15		
5	17	3	5	5			Red-Brown Clayey SILT, little f-c Sand, tr.gravel	
	V		9	12		14	(moist, stiff, ML)	
_	1/	4	4	8			(v.stiff)	
	\square		10	14		18		
	1/	5	6	10			Red-Brown Silty CLAY, trlittle f-c Sand, tr.gravel	
10	\boldsymbol{V}		20	23		30	(moist, v.stiff, CL)	
	$ \Lambda $	6	8	15			Red-Brown Clayey SILT, trlittle f-c Sand	
_	И		25	29		40	(moist, hard, ML)	
			L					
_			<u> </u>					
15	\square						_	
	-//	7	15	19				
_	Н		31	25		50	_	
	\square						_	
	-						_	
20	\square	0	10	04			_	
	-1/1	8	12	21		47	_	
_	Н		26	29		47	_	
_								
25	1						-	
		9	17	22			-	
	1/1	5	24	24		46	Contains some f-c Sand	
	ŕ					10	-	REF = Sample Spoon
	1						_	Refusal
30	1							
		10	12	42	50/0.3	REF	Gray f-c SAND, some Silt, tr.gravel, tr.shale	
_	Н	-						Free standing water
_	1							recorded at 20.0' prior
_	1							to coring.
35			L					
							Gray SHALE Rock, medium hard, sound, thinly	RUN #1: 34.0' - 39.0'
								REC = 100%
_							at approximately 36.5	RQD = 64%
_								
40							Boring Complete at 39.0'	
	N =	NO. BL	OWST	O DRI\	/E 2-IN(2-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS	SSIFIED BY: Geologist

 START
 2/3/2014

 FINISH
 2/3/2014

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG


HOLE NO. B-48 SURF. ELEV 595.8' ± G.W. DEPTH See Notes

DEPTH FT.		SMPL				AMPLER	SOIL OR ROCK CLASSIFICATION	NOTES
Т.		NО. 1	0/6 1	6/12 2	12/18	N	TOPSOIL	Driller notes approx. 3"
		I	5	5		7	Brown Silty CLAY, tr.sand, tr.organics (moist, FILL)	Topsoil
		2	3	4		'		100301
		2	5	6		9	Brown Silty CLAY, tr.sand (moist, stiff, CL)	
5	17	3	4	13		Ŭ	Becomes Red-Brown, contains occasional Silt partings	
-			16	17		29	(v.stiff)	
	17	4	6	10			Red-Brown Silty CLAY, little f-c Sand, tr.gravel	
	1/		18	18		28	(moist, v.stiff, CL)	
_	17	5	3	13				
10	V		24	26		37		
	\Box	6	5	15			(hard)	
_	\square		27	30		42		
_			L					
5								
	-//	7	7	18			Becomes Brown-Gray	
			26	28		44	_	
	-						_	
20	-							
		8	6	11			-	
		0	28	30		39		
	r		20	50		- 55	-	
	1						-	
25	1							
	7	9	4	10			Contains little-some f-c Sand (v.stiff)	
	V		19	25		29		REF = Sample Spoon
								Refusal
30							Brown-Gray f-c SAND and Silt, tr.gravel, tr.shale	
	\vdash	10	16	50/0.4		REF	(moist, SM)	
	-							
	-						Boring Complete with Sample Spoon Refusal at 30.9'	No free standing water
	-						and Auger Refusal at 31.0'	encountered at boring
35						$ \vdash $	-	completion.
	$\left \right $					$ \vdash $		2" PVC groundwater
	$\left \right $					\vdash		observation well installed
	$\left \right $		<u> </u>			+ + -		at boring completion.
40	$\left \right $					$ \vdash $		Refer to installation log for details.
ŧU	1		L					
	N =	NO. BL	owst	O DRIV	'E 2-IN	CH SPOON	2-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLAS	SSIFIED BY: Geologist

MONITORING WELL COMPLETION RECORD

WELL NUMBER: B-48		SERVICES, INC.
PROJECT NAME: WESTWOOD CC	DRILLING METHO	D: ASTM D1586 USING HSA
PROJECT NUMBER: BE-13-192	GEOLOGIST: N/A	
DRILLER: A. JAKUBCZAK	INSTALLATION D	ATE(S): 2/3/2014

STAI FINIS SHE	DATE START 2/4/2 FINISH 2/4/2 SHEET 1 0			/4/20 OF	14		S	JB SERVICES, INC. SUBSURFACE LOG	HOLE NO. B-49 SURF. ELEV 593.5' ± G.W. DEPTH See Notes		
PROJECT: PROPOSED IMPRO PROJ. NO.: BE-13-192					MPR	OVEN	EMENTS LOCATION: WESTWOOD COUNTRY CLUB AMHERST, NEW YORK				
DEPTH		SMPL				AMPLER		SOIL OR ROCK	NOTES		
FT.		NО. 1	0/6 2	6/12 3	12/18	Ν		CLASSIFICATION TOPSOIL	Driller notes approx. 5"	-	
	V	1	4	4		7		Black Organic Clayey SILT, trlittle f-c Sand	Topsoil	-	
	17	2	3	5				(moist-wet, FILL)	1 -		
	Ц		5	7		10		Brown-Black Silty CLAY, tr.sand (moist, FILL)	-		
5	\cdot	3	5 10	9 13		19		Red-Brown Clayey SILT, tr.sand (moist, v.stiff, ML)	-	4	
	┢	4	4	13		19		-	-	-	
-	\mathbf{V}	-	14	16		26		-	-		
	17	5	6	9				Becomes Brown-Gray			
10	Ľ		16	17		25			-		
	\cdot	6	5 18	14 21		32		Contains tr.gravel (hard)	-	_	
	+		10	21		32		-	-	-	
								1	-	1	
15											
	4/	7	8	12				-	-		
	\vdash		20	27		32		-	-	-	
		8	10	16				-	-	-	
20	\mathbf{V}	_	28	31		44			-		
									_		
-								Boring Complete at 20.0'	No free standing water	_	
_								-	encountered at boring	-	
25								-	-		
_								-	-		
_	-								-	_	
30								-	-	-	
	1								-	4	
									-		
			<u> </u>					-	-		
35	$\left \right $							4	-	-	
	1							1	-	4	
-								1	-		
									-		
	$\left \right $							4		\neg	
40			I					1	<u> </u>		
	DR	ILLER:		A. J	AKUE	BCZAK		NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLA DRILL RIG TYPE : CME-550X USING HOLLOW STEM AUGERS	SSIFIED BY: Geologist		

APPENDIX B

LABORATORY TEST DATA

Laboratory Test Report

PROJECT: Proposed Westwood Country Club Development Project

CLIENT: Mensch Capital Partners, LLC.

DATE: January 29, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-1

Attached are the results of laboratory testing conducted on various samples from the above referenced project. Mr. John Danzer, representing Empire –Geo Services, Inc, chose samples contained in this report.

The testing conducted was as follows:

ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock

ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

ASTM C-136: Sieve Analysis of Fine and Coarse Aggregates

Samples were received at the SJB Services, Inc. laboratory on January 21, 2014 where they were processed for testing.

If the reviewer should have any questions concerning this report, please do not hesitate to contact our office at any time.

SJB Services, Inc.

Paul Gregorczyk Laboratory Manager

Laboratory Test Report

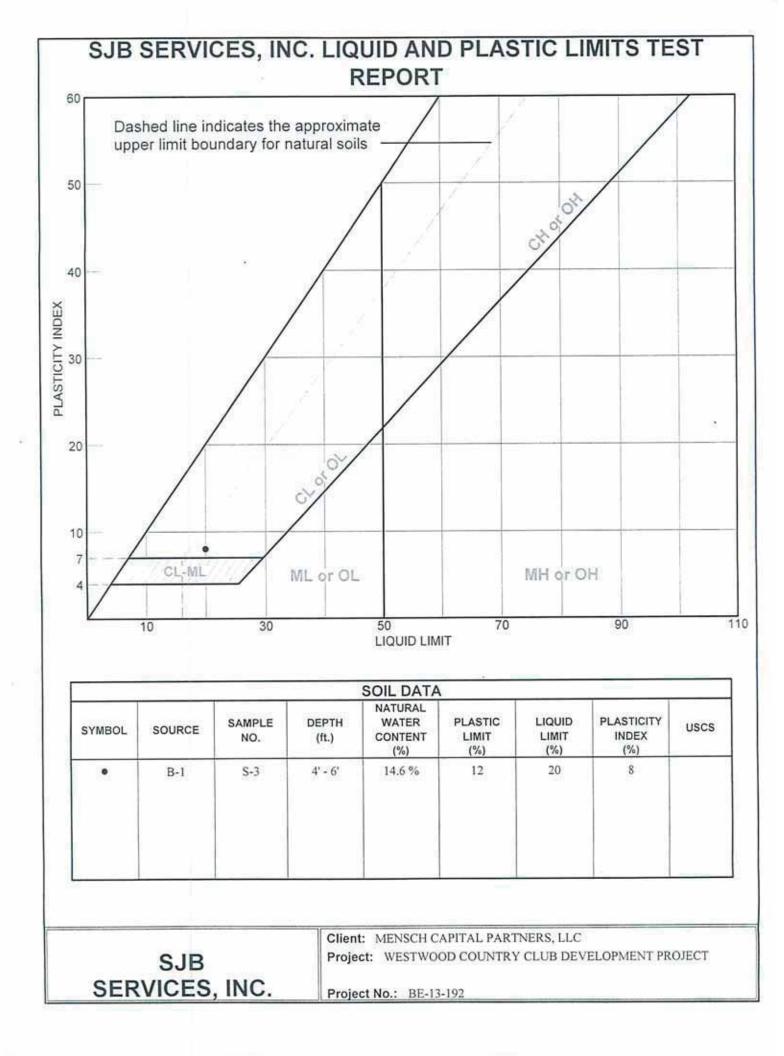
PROJECT: Proposed Westwood Country Club Development Project

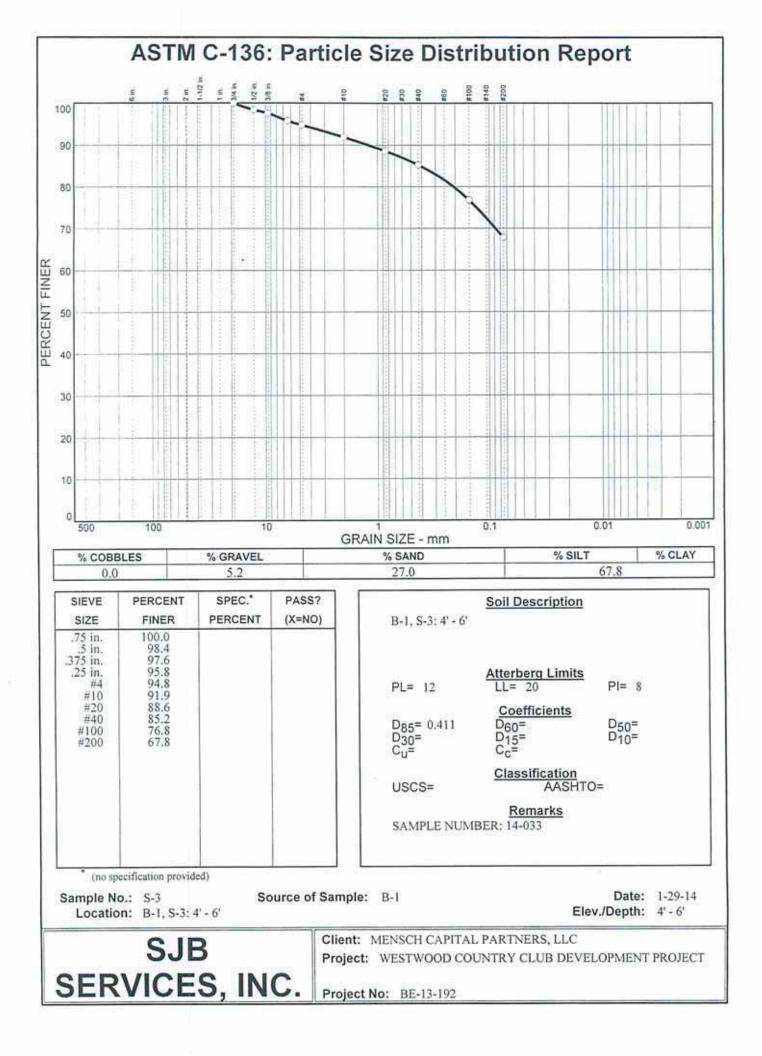
CLIENT: Mensch Capital Partners, LLC.

DATE: January 29, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-1 Page 1 of 6

SAMPLE NUMBER: 14-033 SAMPLE LOCATION: B-1, S-3: 4' - 6'


ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
14.6 %	20	12	8

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 27.7 % Value of Shrinkage Limit = 12 Value of Shrinkage Ratio = 2.02

Sieve	Percent
Size	Passing
3/4"	100.0
1/2"	98.4
3/8"	97.6
1/4"	95.8
#4	94.8
#10	91.9
#20	88.6
#40	85.2
#100	76.8
#200	57.8

Laboratory Test Report

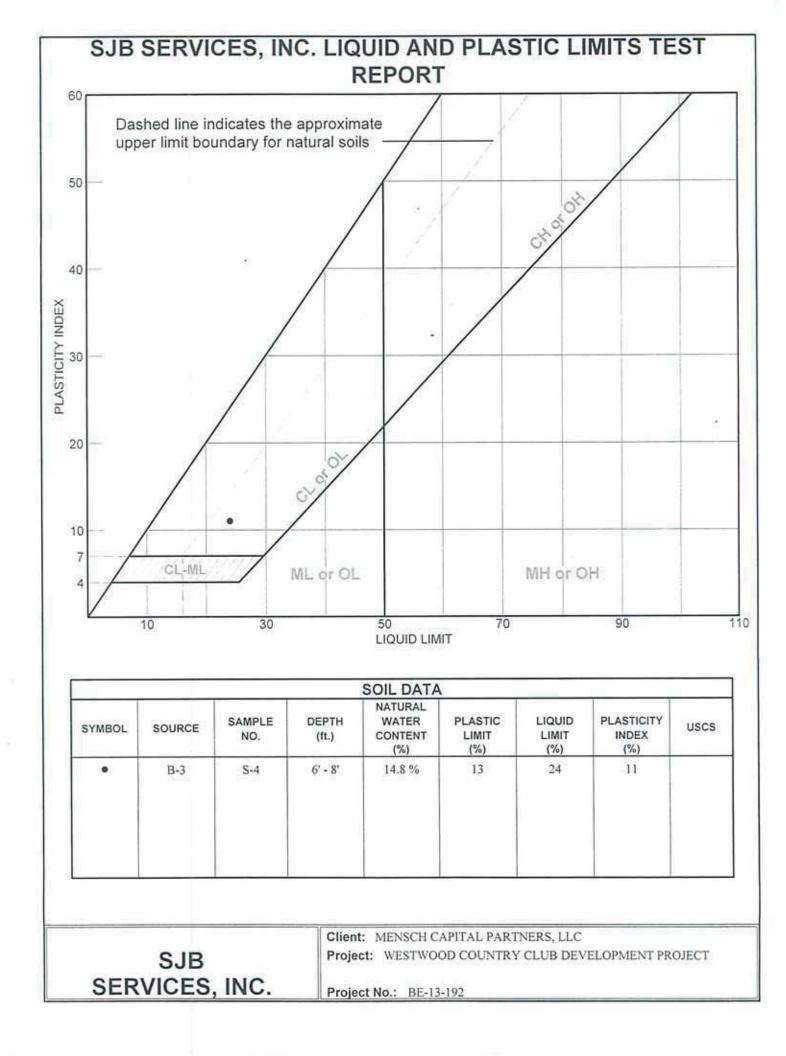
PROJECT: Proposed Westwood Country Club Development Project

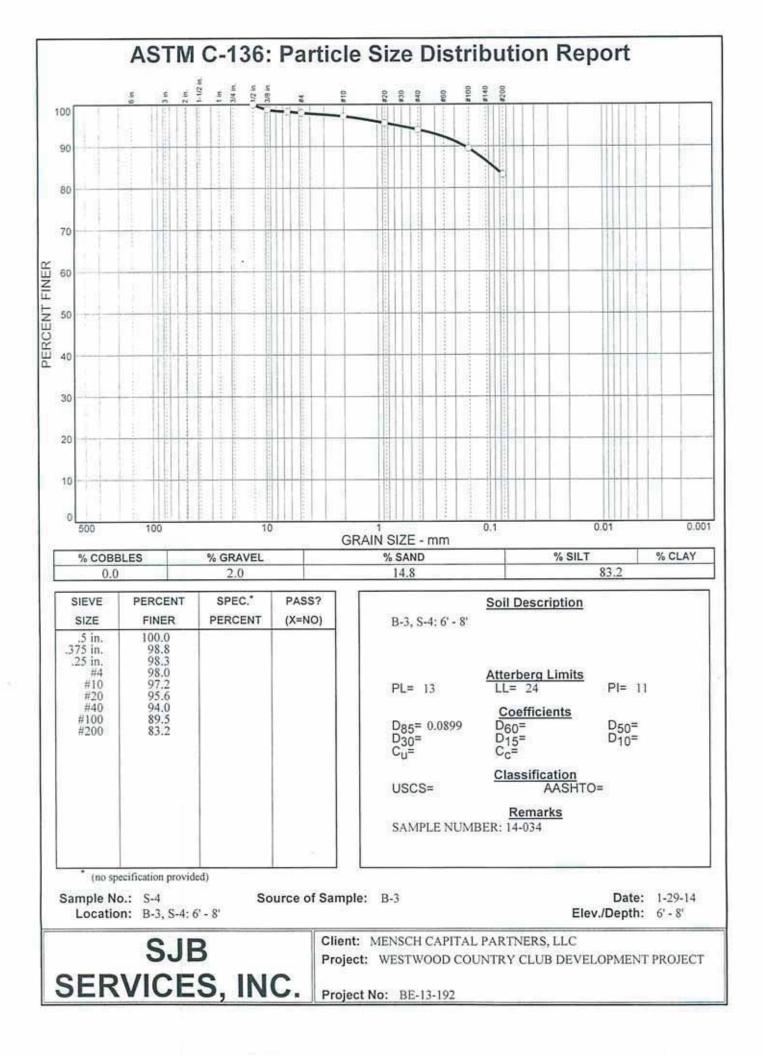
CLIENT: Mensch Capital Partners, LLC.

DATE: January 29, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-1 Page 2 of 6

SAMPLE NUMBER: 14-034 SAMPLE LOCATION: B-3, S-4: 6' – 8'


ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
14.8 %	24	13	11

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 32.3 % Value of Shrinkage Limit = 13 Value of Shrinkage Ratio = 1.94

Sieve	Percent
Size	Passing
1/2"	100.0
3/8"	98.8
1/4"	98.3
#4	98.0
#10	97.2
#20	95.6
#40	94.0
#100	89.5
#200	83.2

Laboratory Test Report

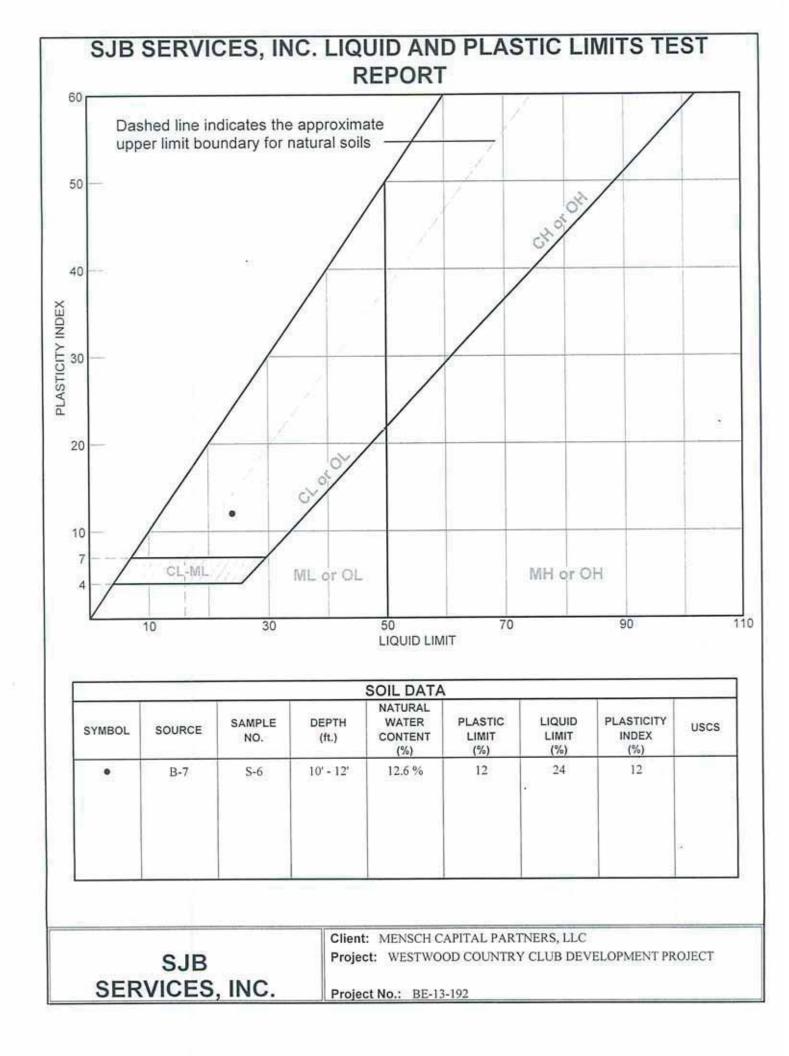
PROJECT: Proposed Westwood Country Club Development Project

CLIENT: Mensch Capital Partners, LLC.

DATE: January 29, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-1 Page 3 of 6

SAMPLE NUMBER: 14-039 SAMPLE LOCATION: B-7, S-6: 10' – 12'


ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil

Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
12.6 %	24	12	12

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 37.9 % Value of Shrinkage Limit = 13 Value of Shrinkage Ratio = 1.93

Percent
Passing
100.0
97.2
95.9
92.5
91.7
89.1
86.8
85.0
80.2
74.3

Laboratory Test Report

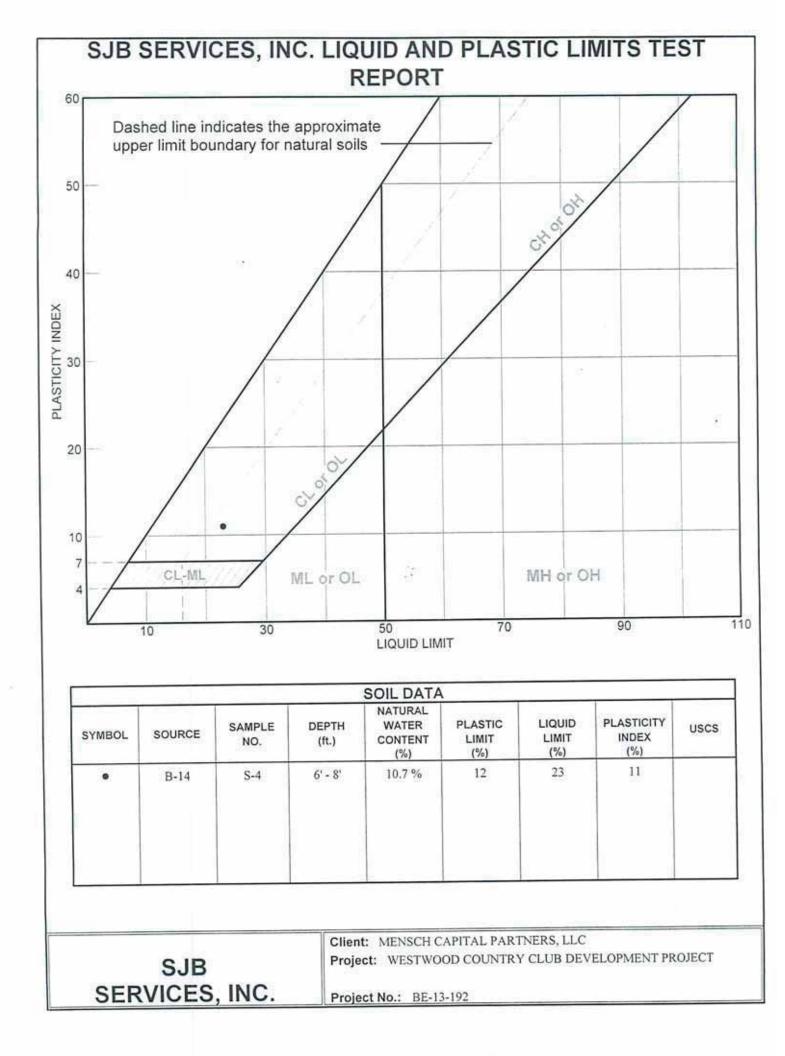
PROJECT: Proposed Westwood Country Club Development Project

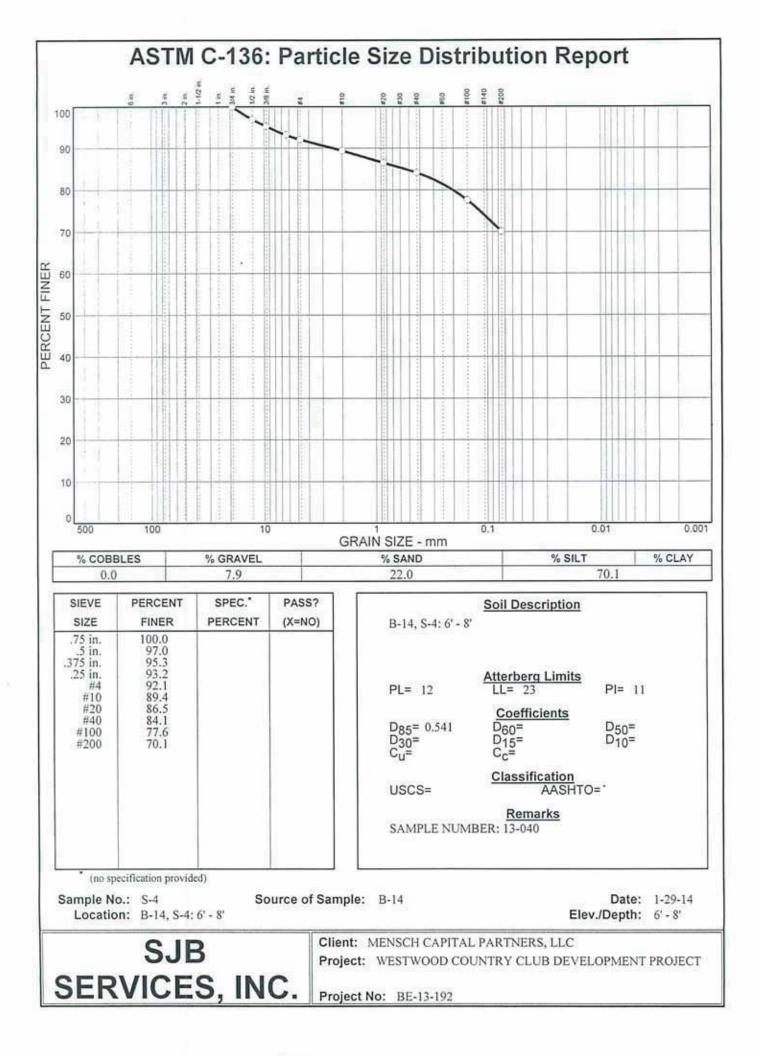
CLIENT: Mensch Capital Partners, LLC.

DATE: January 29, 2014

PROJECT NO.: BE-13-192 RÉPORT NO.: LTR-1 Page 4 of 6

SAMPLE NUMBER: 14-040 SAMPLE LOCATION: B-14, S-4: 6' – 8'


ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
10.7 %	23	12	11

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 32.9 % Value of Shrinkage Limit = 17 Value of Shrinkage Ratio = 1.93

Sieve	Percent
Size	Passing
3/4"	100.0
1/2"	97.0
3/8"	95.3
1/4"	93.2
#4	92.1
#10	89.4
#20	86.5
#40	84.1
#100	77.6
#200	70.1

Laboratory Test Report

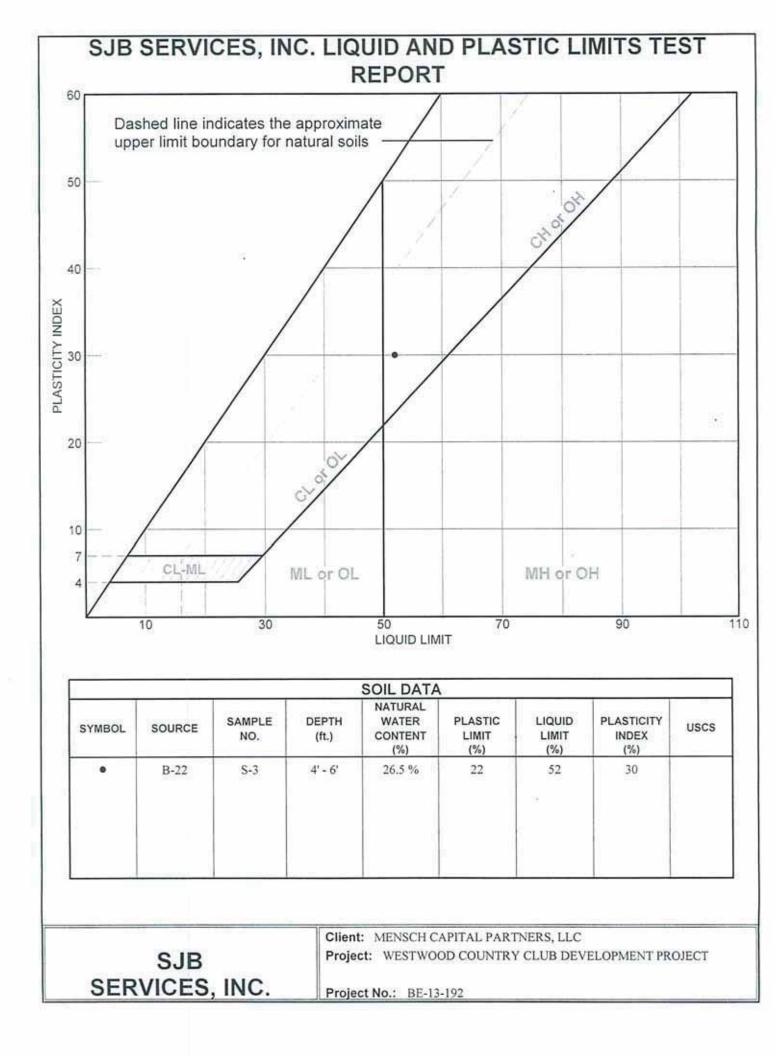
PROJECT: Proposed Westwood Country Club Development Project

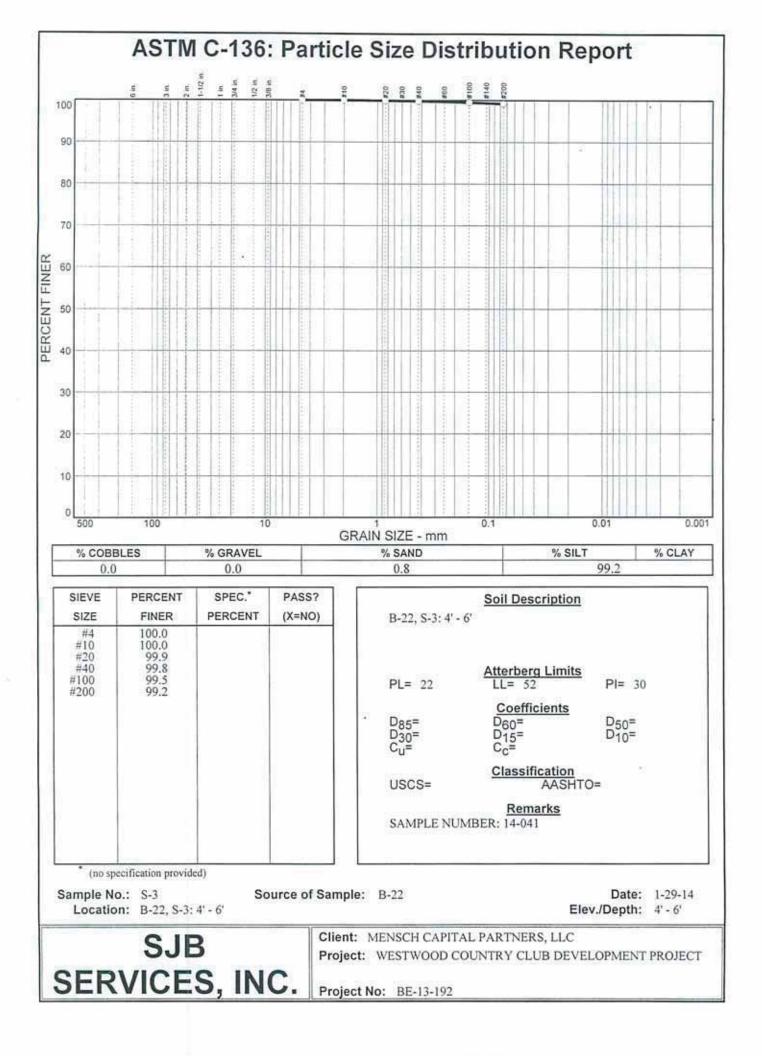
CLIENT: Mensch Capital Partners, LLC.

DATE: January 29, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-1 Page 5 of 6

SAMPLE NUMBER: 14-041 SAMPLE LOCATION: B-22, S-3: 4' - 6'


ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
26.5 %	52	22	30

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 64.8 % Value of Shrinkage Limit = 23 Value of Shrinkage Ratio = 1.69

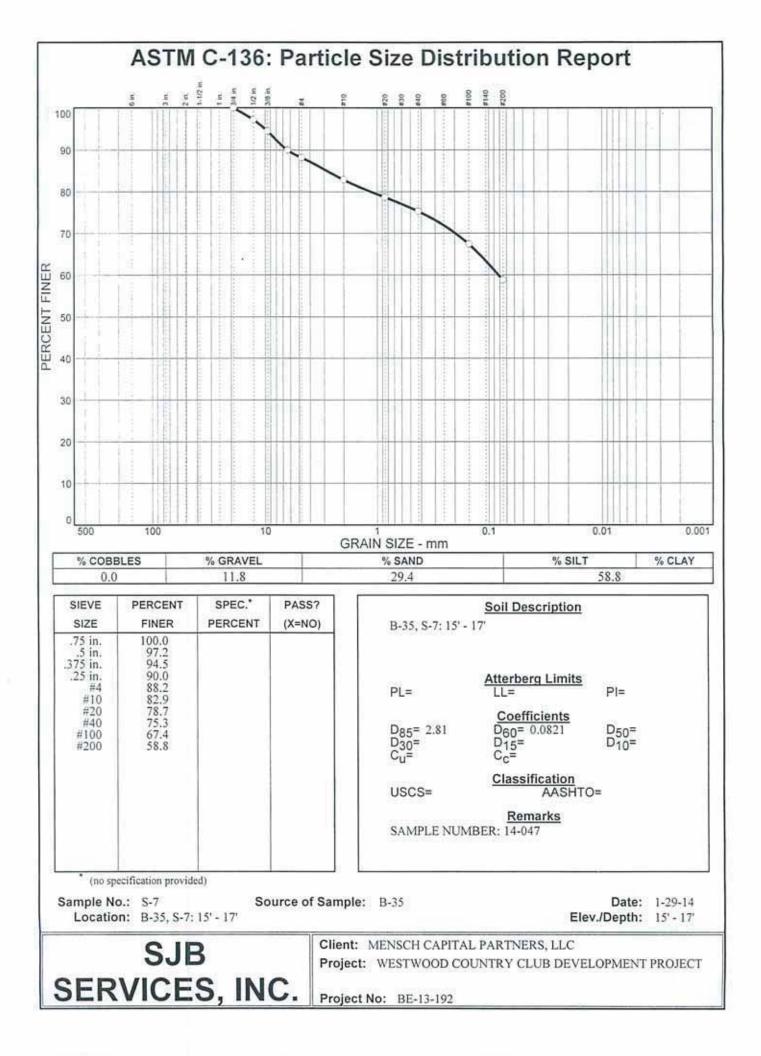
Sieve	Percent
Size	Passing
#4	100.0
#10	100.0
#20	99.9
#40	99.8
#100	99.5
#200	99.2

Laboratory Test Report

PROJECT: Proposed Westwood Country Club Development Project

CLIENT: Mensch Capital Partners, LLC.

DATE: January 29, 2014


PROJECT NO.: BE-13-192 REPORT NO.: LTR-1 Page 6 of 6

SAMPLE NUMBER: 14-047 SAMPLE LOCATION: B-35, S-7: 15' – 17'

ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock

Moisture Content: 8.7 %

Percent
Passing
100.0
97.2
94.5
90.0
88.2
82.9
78.7
75.3
67.4
58.8

Laboratory Test Report

PROJECT: Proposed Westwood Country Club Development Project

CLIENT: Mensch Capital Partners, LLC.

DATE: February 6, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-2

Attached are the results of laboratory testing conducted on various samples from the above referenced project. Mr. John Danzer, representing Empire –Geo Services, Inc, chose samples contained in this report.

The testing conducted was as follows:

ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock

ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

ASTM C-136: Sieve Analysis of Fine and Coarse Aggregates

Samples were received at the SJB Services, Inc. laboratory on January 27, 2014 where they were processed for testing.

If the reviewer should have any questions concerning this report, please do not hesitate to contact our office at any time.

SJB Services, Inc.

Paul Gregorczyk Laboratory Manager

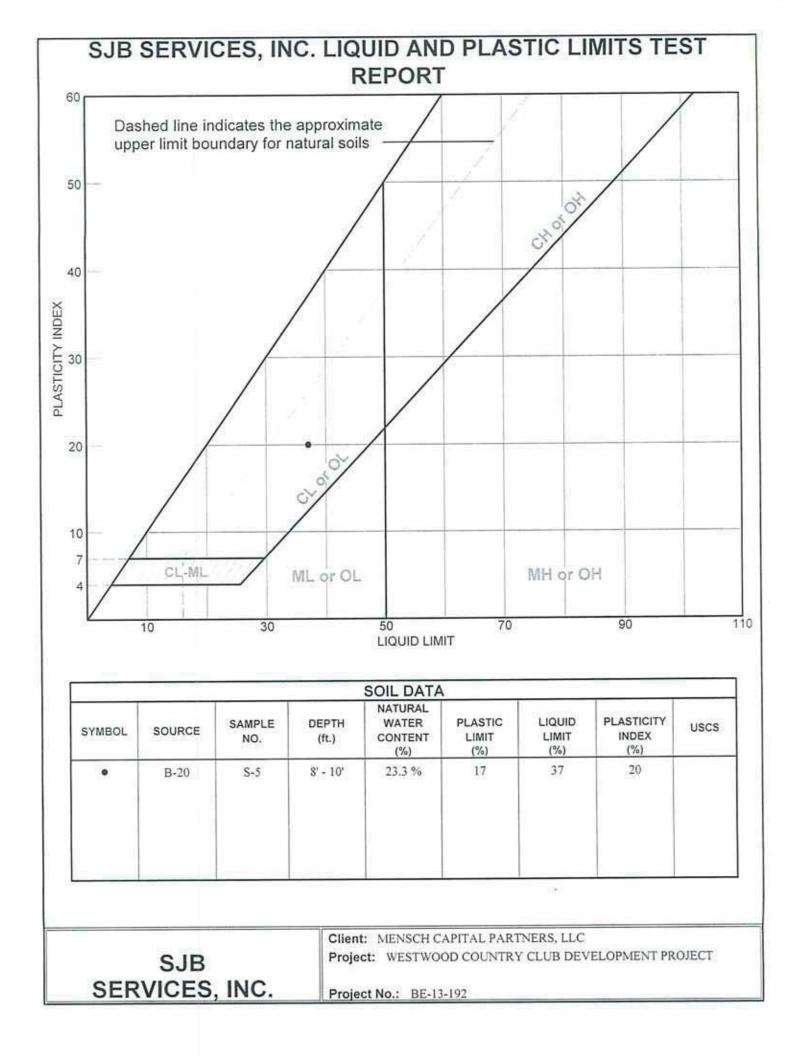
Laboratory Test Report

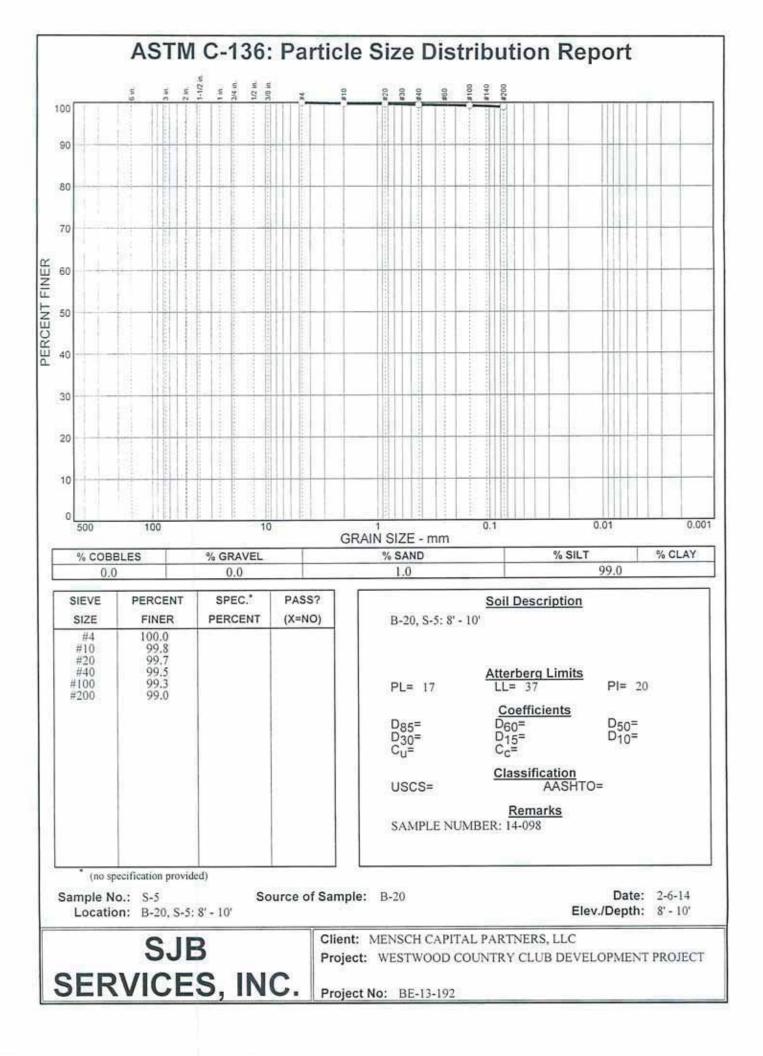
PROJECT: Proposed Westwood Country Club Development Project

CLIENT: Mensch Capital Partners, LLC.

February 6, 2014	PROJECT NO.: BE-13-192
25 E	REPORT NO.: LTR-2
	Page 1 of 3
	February 6, 2014

SAMPLE NUMBER: 14-098 SAMPLE LOCATION: B-20, S-5: 8' – 10'


ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
23.3 %	37	17	20

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 51.6 % Value of Shrinkage Limit = 19 Value of Shrinkage Ratio = 1.81

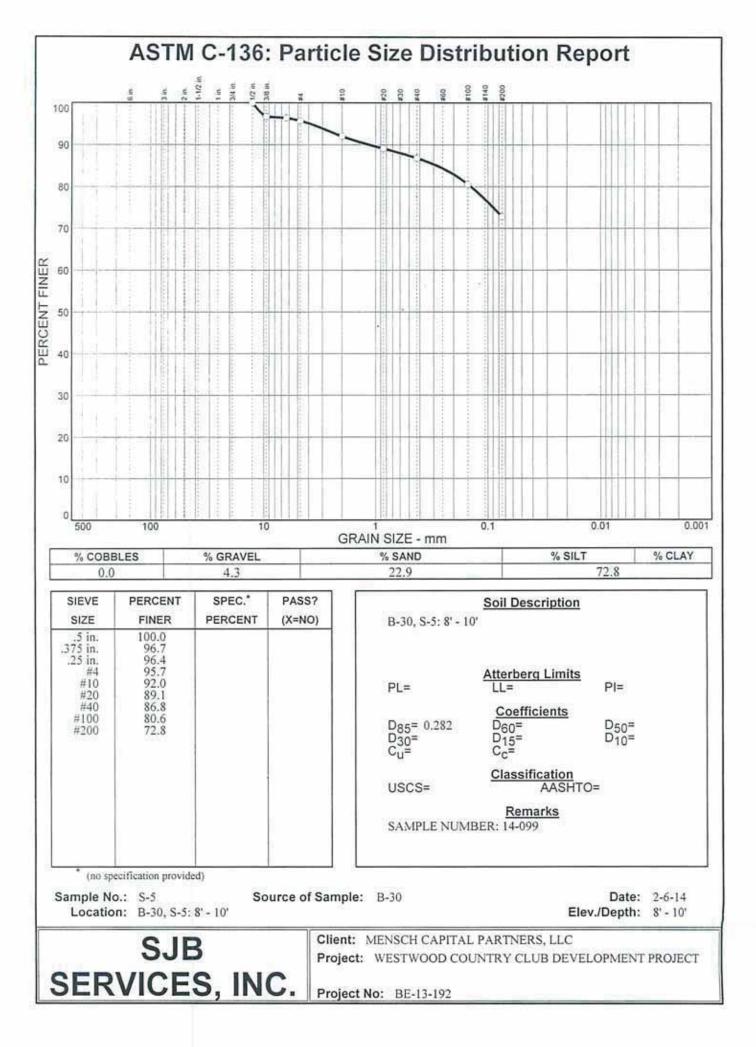
Sieve	Percent
Size	Passing
#4	100.0
#10	99.8
#20	99.7
#40	99.5
#100	99.3
#200	99.0

Laboratory Test Report

PROJECT: Proposed Westwood Country Club Development Project

CLIENT: Mensch Capital Partners, LLC.

DATE: February 6, 2014


PROJECT NO.: BE-13-192 REPORT NO.: LTR-2 Page 2 of 3

SAMPLE NUMBER: 14-099 SAMPLE LOCATION: B-30, S-5: 8' – 10'

ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil

Moisture Content = 11.4 %

Sieve	Percent
Size	Passing
1/2"	100.0
3/8"	96.7
1/4"	96.4
#4	95.7
#10	92.0
#20	89.1
#40	86.8
#100	80.6
#200	72.8

Laboratory Test Report

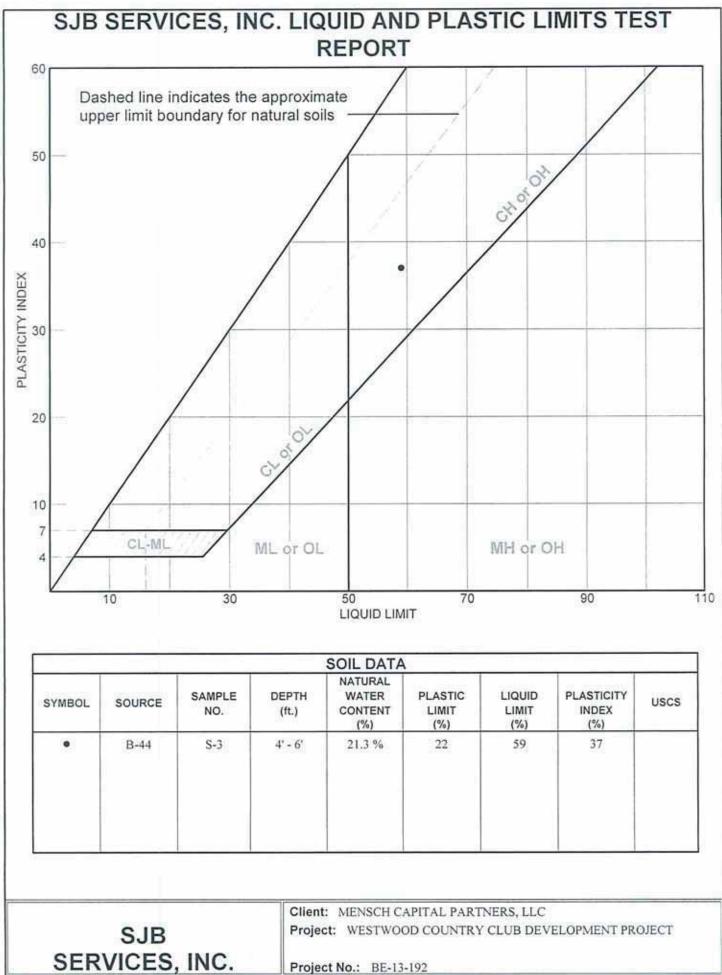
PROJECT: Proposed Westwood Country Club Development Project

CLIENT: Mensch Capital Partners, LLC.

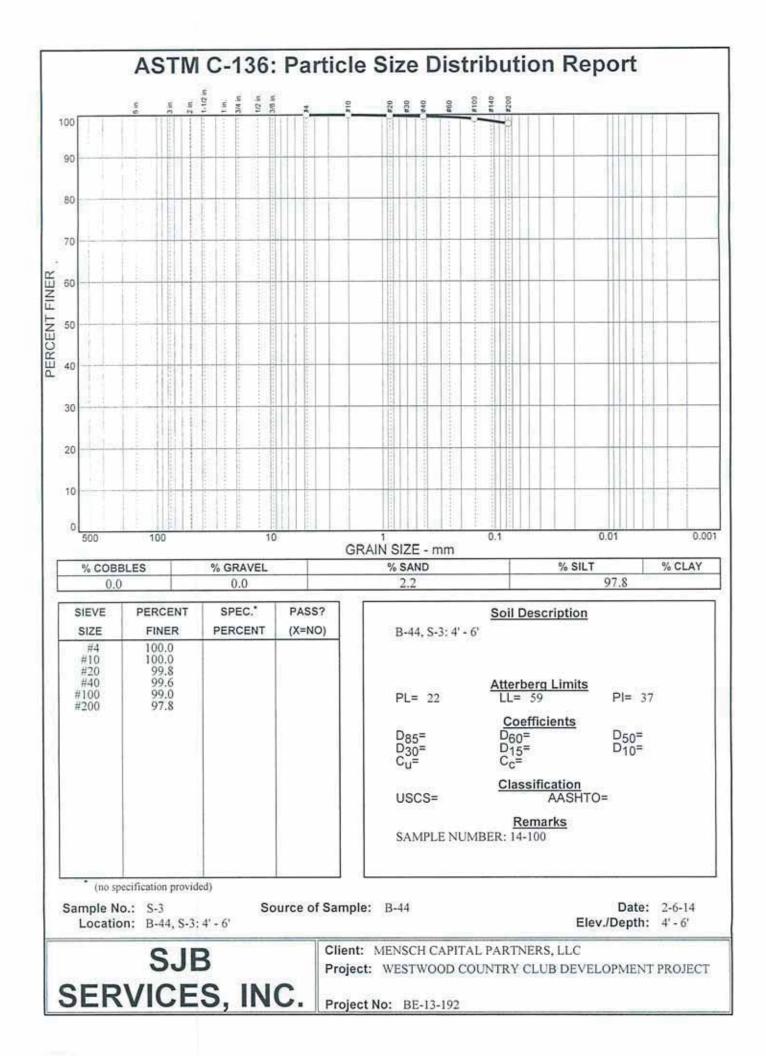
DATE: February 6, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-2 Page 3 of 3

SAMPLE NUMBER: 14-100 SAMPLE LOCATION: B-44, S-3: 4' - 6'


ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil

Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
21.3 %	59	22	37


ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 72.6 % Value of Shrinkage Limit = 22 Value of Shrinkage Ratio = 1.69

Sieve	Percent
Size	Passing
#4	100.0
#10	100.0
#20	99.8
#40	99.6
#100	99.0
#200	97.8

Project No.: BE-13-192

Laboratory Test Report

PROJECT: Proposed Westwood Country Club Development Project

CLIENT: Mensch Capital Partners, LLC.

DATE: February 14, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-3

Attached are the results of laboratory testing conducted on various samples from the above referenced project. Mr. John Danzer, representing Empire –Geo Services, Inc, chose samples contained in this report.

The testing conducted was as follows:

ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock

ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

ASTM C-136: Sieve Analysis of Fine and Coarse Aggregates

Samples were received at the SJB Services, Inc. laboratory on February 7, 2014 where they were processed for testing.

If the reviewer should have any questions concerning this report, please do not hesitate to contact our office at any time.

SJB Services, Inc.

Paul Gregorczyk Laboratory Manager

Laboratory Test Report

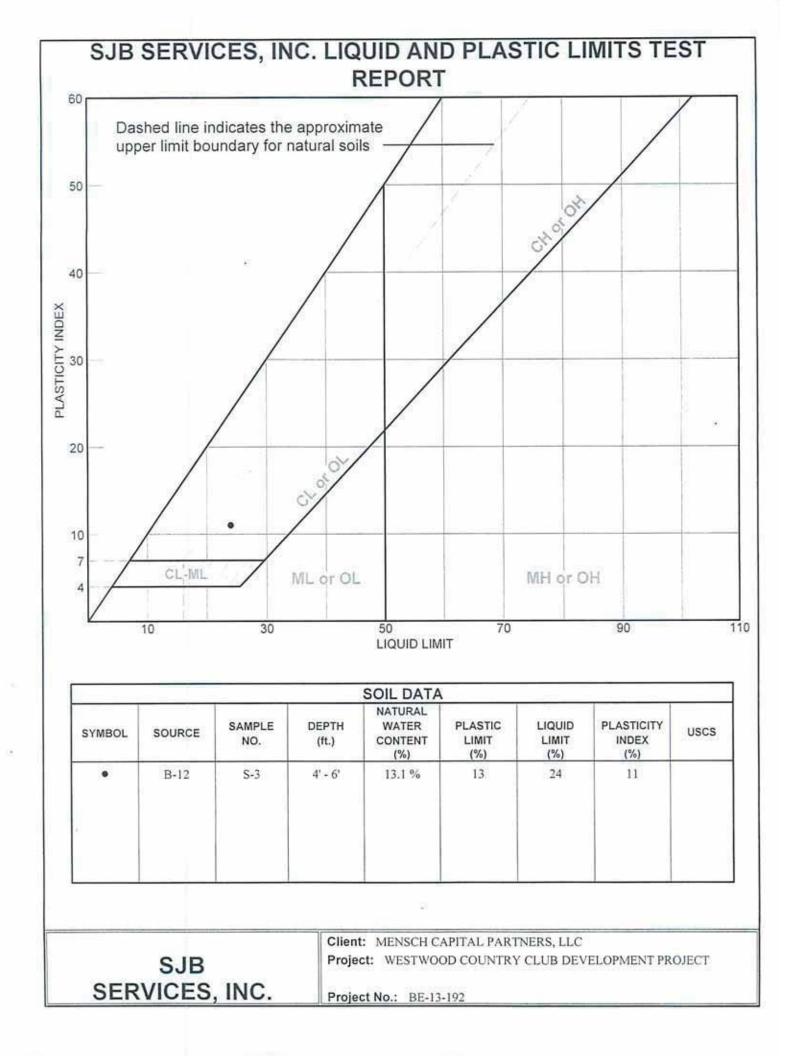
PROJECT: Proposed Westwood Country Club Development Project

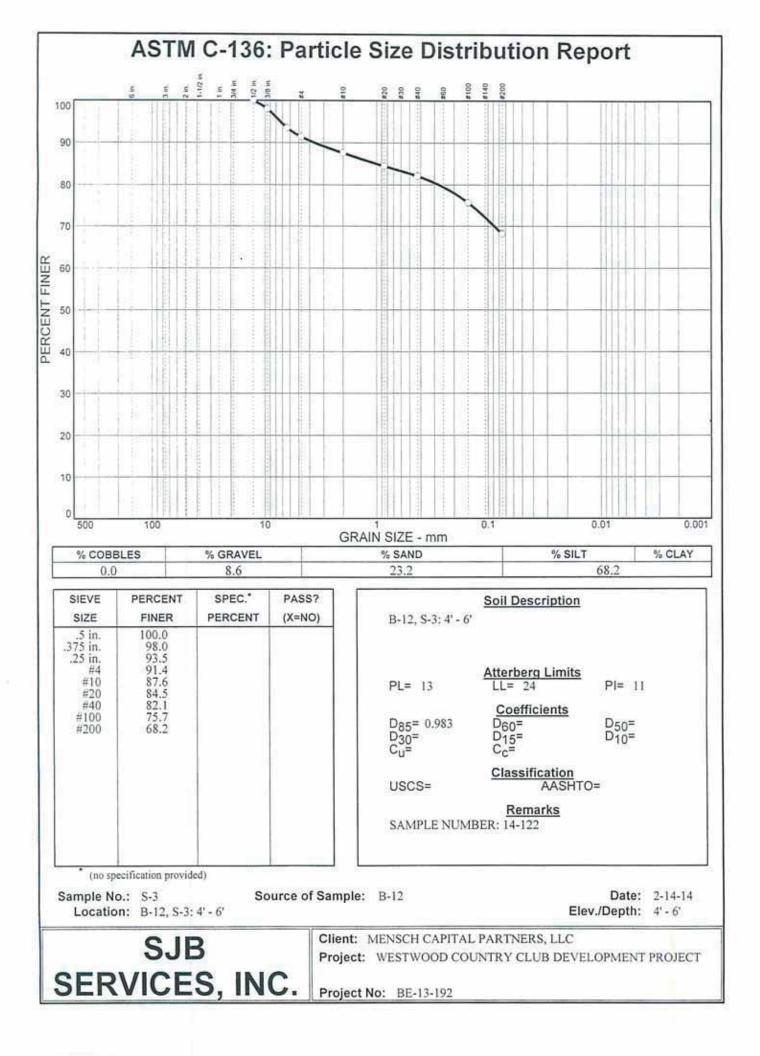
CLIENT: Mensch Capital Partners, LLC.

DATE: February 14, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-3 Page 1 of 6

SAMPLE NUMBER: 14-122 SAMPLE LOCATION: B-12, S-3: 4 – 6'


ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
13.1 %	24	13	11

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 28.5 % Value of Shrinkage Limit = 12 Value of Shrinkage Ratio = 1.98

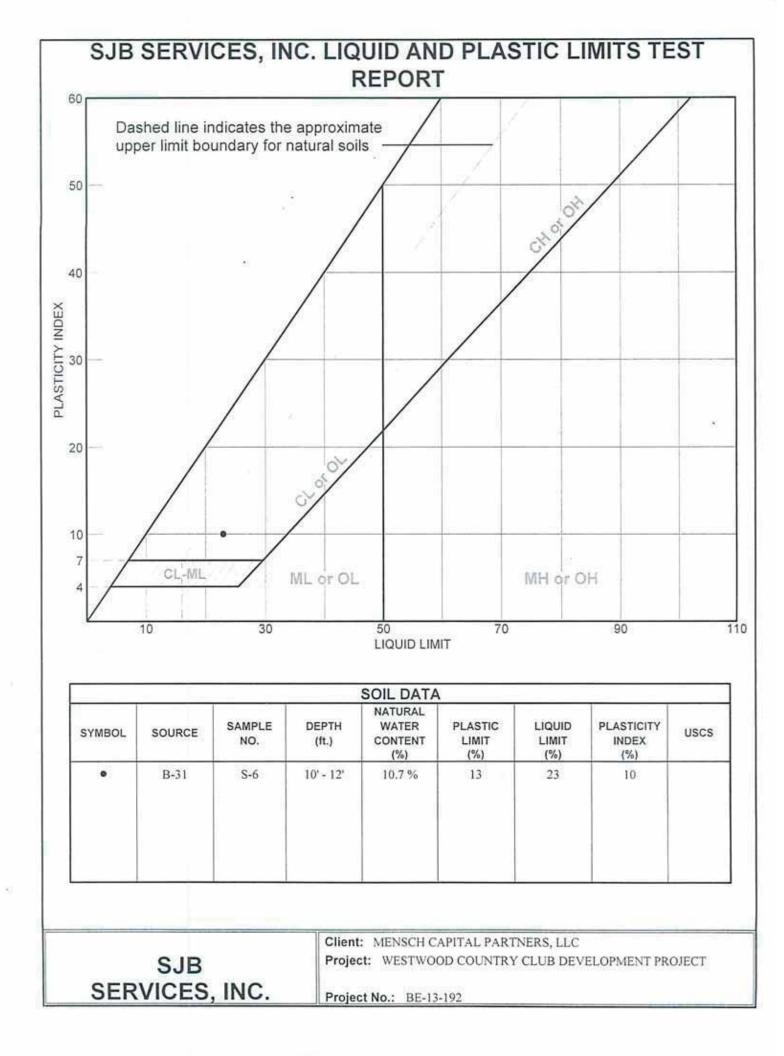
Sieve	Percent
Size	Passing
1/2''	100.0
3/8"	98.0
1/4"	93.5
#4	91.4
#10	87.6
#20	84.5
#40	82.1
#100	75.7
#200	68.2

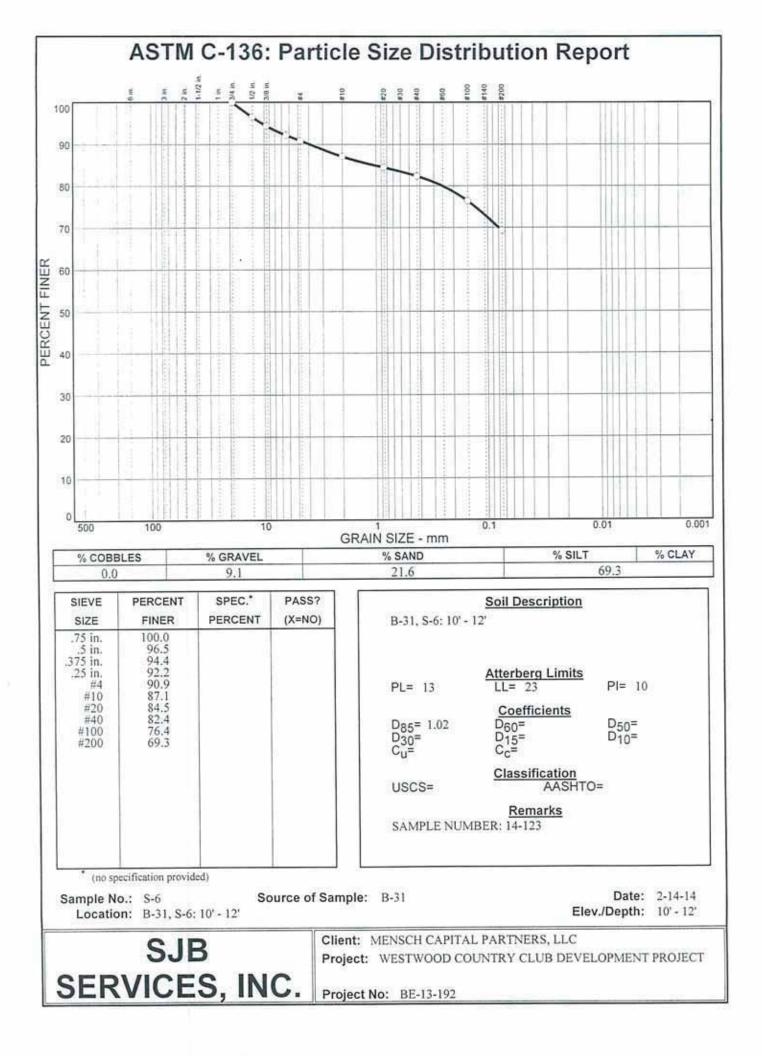
Laboratory Test Report

- PROJECT: Proposed Westwood Country Club Development Project
- CLIENT: Mensch Capital Partners, LLC.
- DATE: February 14, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-2 Page 2 of 6

SAMPLE NUMBER: 14-123 SAMPLE LOCATION: B-31, S-6: 10' – 12'


ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
10.7 %	23	13	10

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 43.0 % Value of Shrinkage Limit = 12 Value of Shrinkage Ratio = 1.94

Sieve	Percent
Size	Passing
3/4"	100.0
1/2"	96.5
3/8"	94.4
1/4"	92.2
#4	90.9
#10	87.1
#20	84.5
#40	82.4
#100	76.4
#200	69.3

4

Western New York Office 5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110 Fax: (716) 649-8051

Laboratory Test Report

PROJECT: Proposed Westwood Country Club Development Project

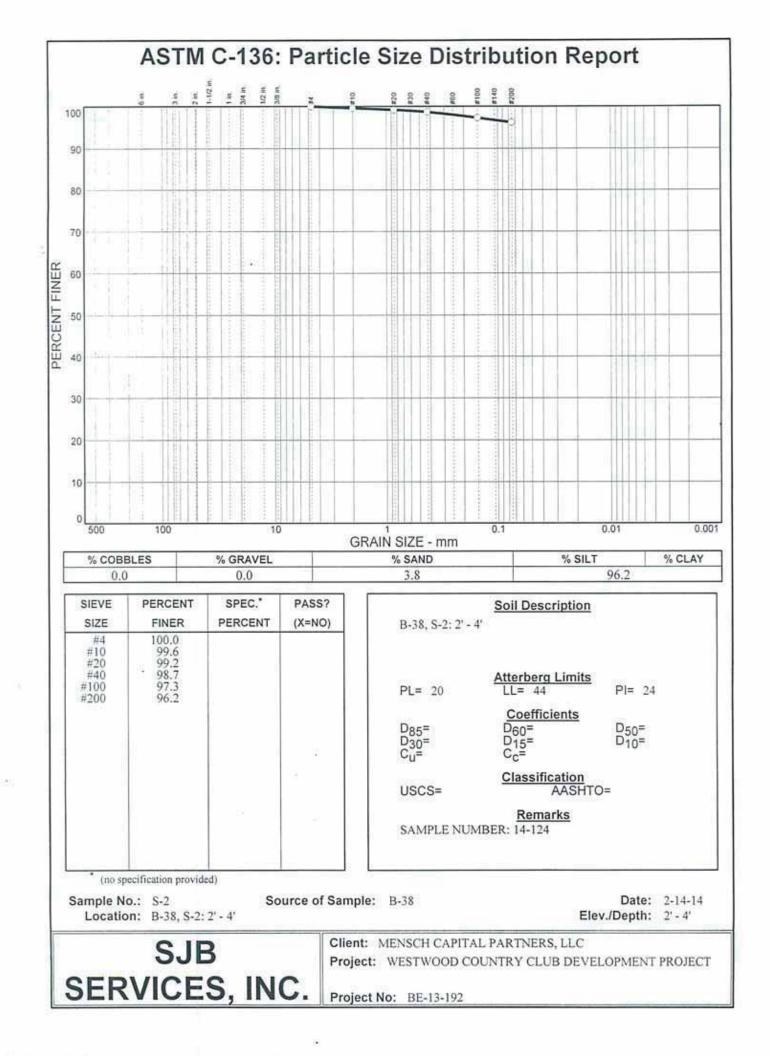
CLIENT: Mensch Capital Partners, LLC.

DATE: February 14, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-2 Page 3 of 6

SAMPLE NUMBER: 14-124 SAMPLE LOCATION: B-38, S-2: 2' – 4'

ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
21.3 %	44	20	24

ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 51.2 % Value of Shrinkage Limit = 20 Value of Shrinkage Ratio = 1.64

Sieve	Percent
Size	Passing
#4	100.0
#10	99.6
#20	99.2
#40	98.7
#100	97.3
#200	96.2

Western New York Office 5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110 Fax: (716) 649-8051

Laboratory Test Report

PROJECT: Proposed Westwood Country Club Development Project

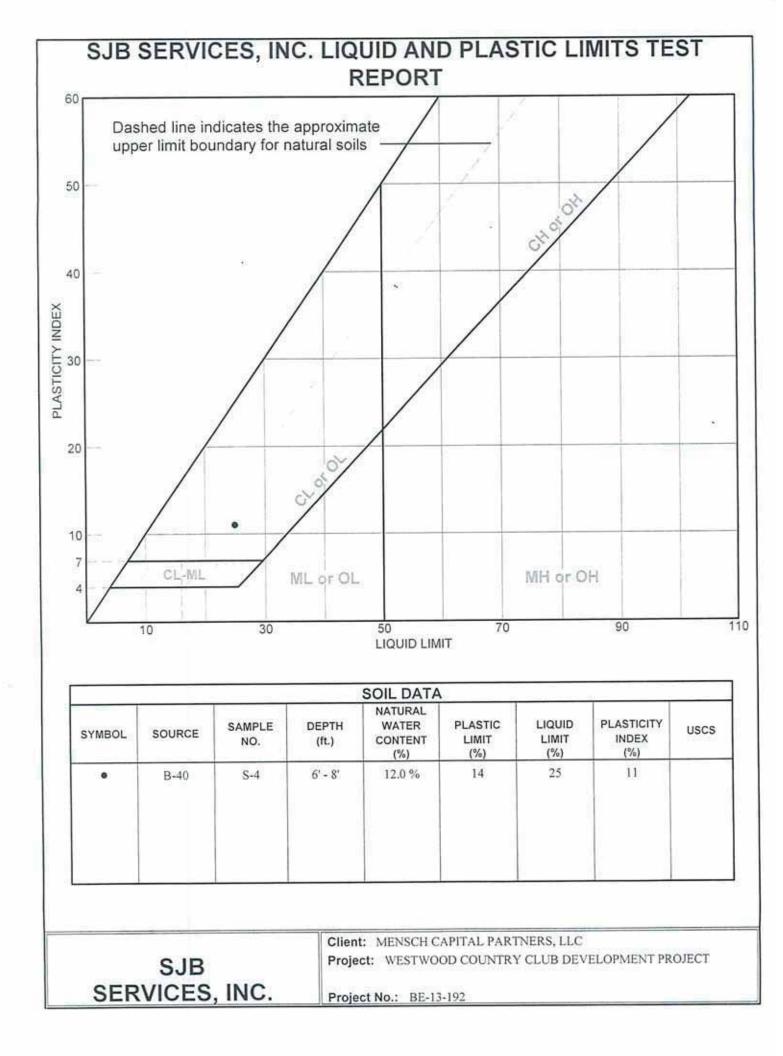
CLIENT: Mensch Capital Partners, LLC.

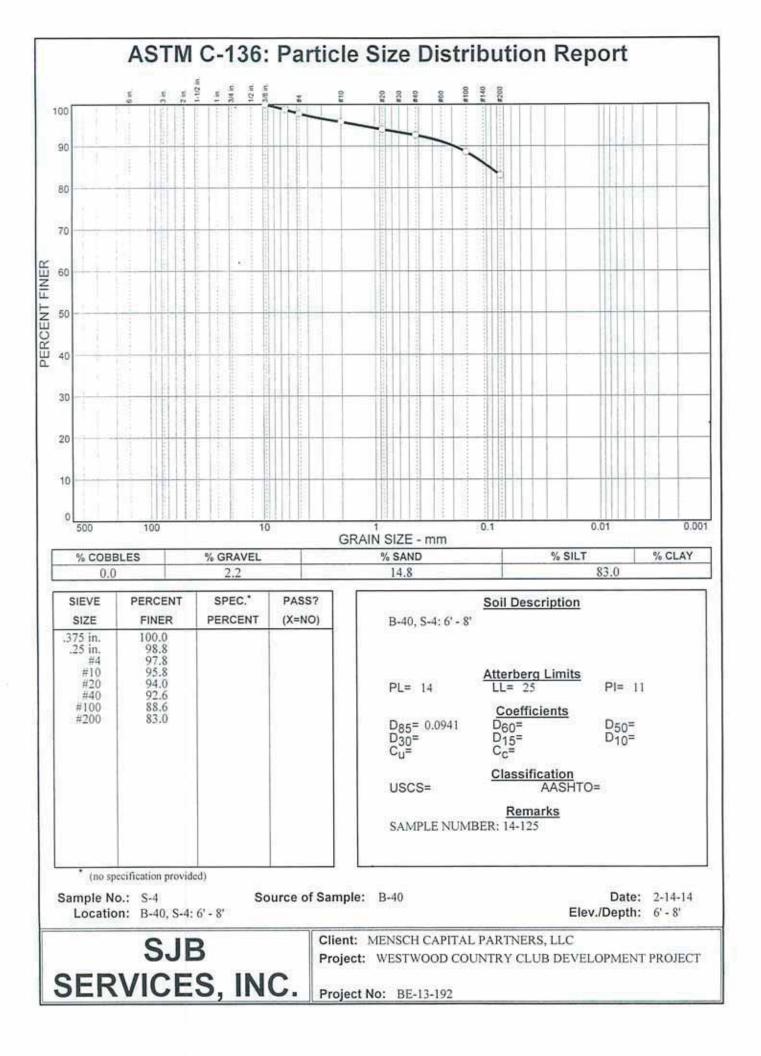
DATE: February 14, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-2 Page 4 of 6

SAMPLE NUMBER: 14-125 SAMPLE LOCATION: B-40, S-4: 6' – 8'

ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
12.0 %	25	14	11


ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 31.5 % Value of Shrinkage Limit = 13 Value of Shrinkage Ratio = 1.95

ASTM C-136: Sieve Analysis of Fine and Coarse Aggregates

Sieve	Percent
Size	Passing
3/8"	100.0
1/4""	98.8
#4	97.8
#10	95.8
#20	94.0
#40	92.6
#100	88.6
#200	83.0

Western New York Office 5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110 Fax: (716) 649-8051

Laboratory Test Report

PROJECT: Proposed Westwood Country Club Development Project

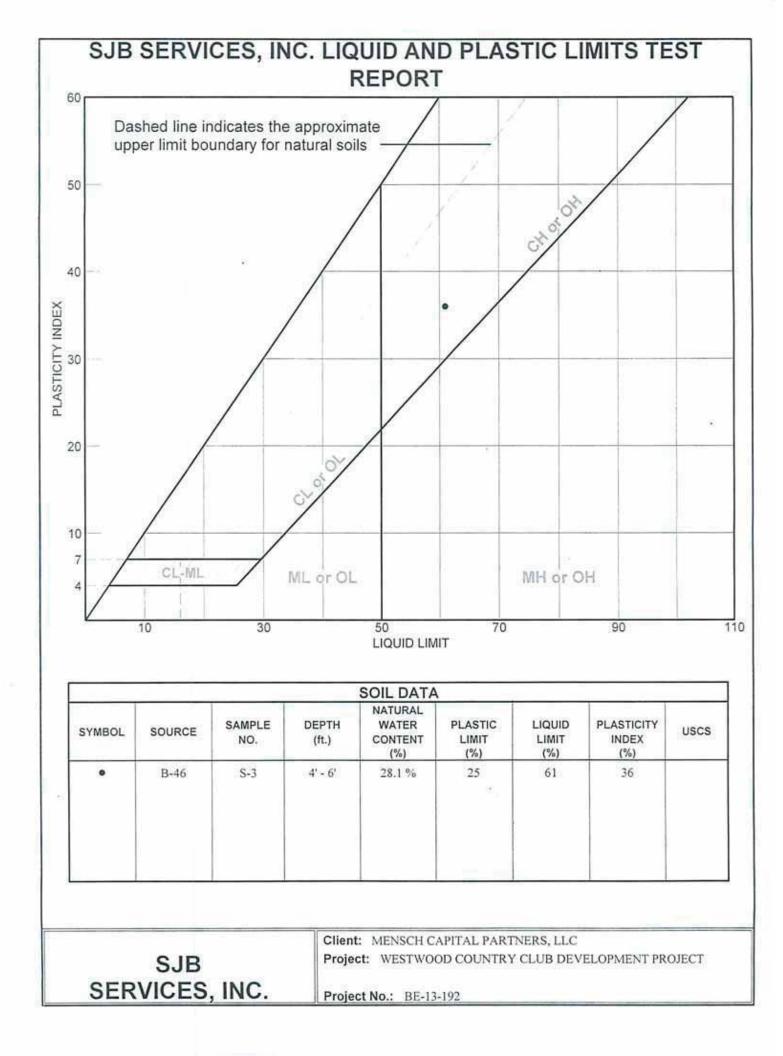
CLIENT: Mensch Capital Partners, LLC.

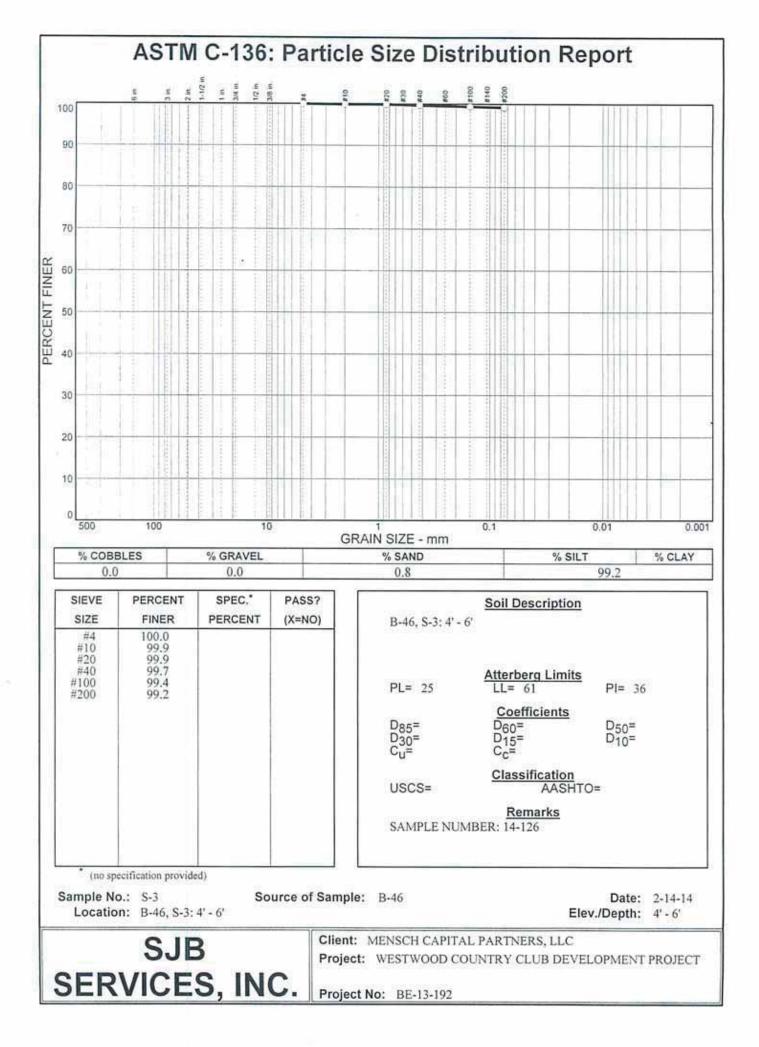
DATE: February 14, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-2 Page 5 of 6

SAMPLE NUMBER: 14-126 SAMPLE LOCATION: B-46, S-3: 4' – 6'

ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
28.1 %	61	25	36


ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 66.6 % Value of Shrinkage Limit = 22 Value of Shrinkage Ratio = 1.65

ASTM C-136: Sieve Analysis of Fine and Coarse Aggregates

Sieve	Percent
Size	Passing
#4	100.0
#10	99.9
#20	99.9
#40	99.7
#100	99.4
#200	99.2

Western New York Office 5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110 Fax: (716) 649-8051

Laboratory Test Report

PROJECT: Proposed Westwood Country Club Development Project

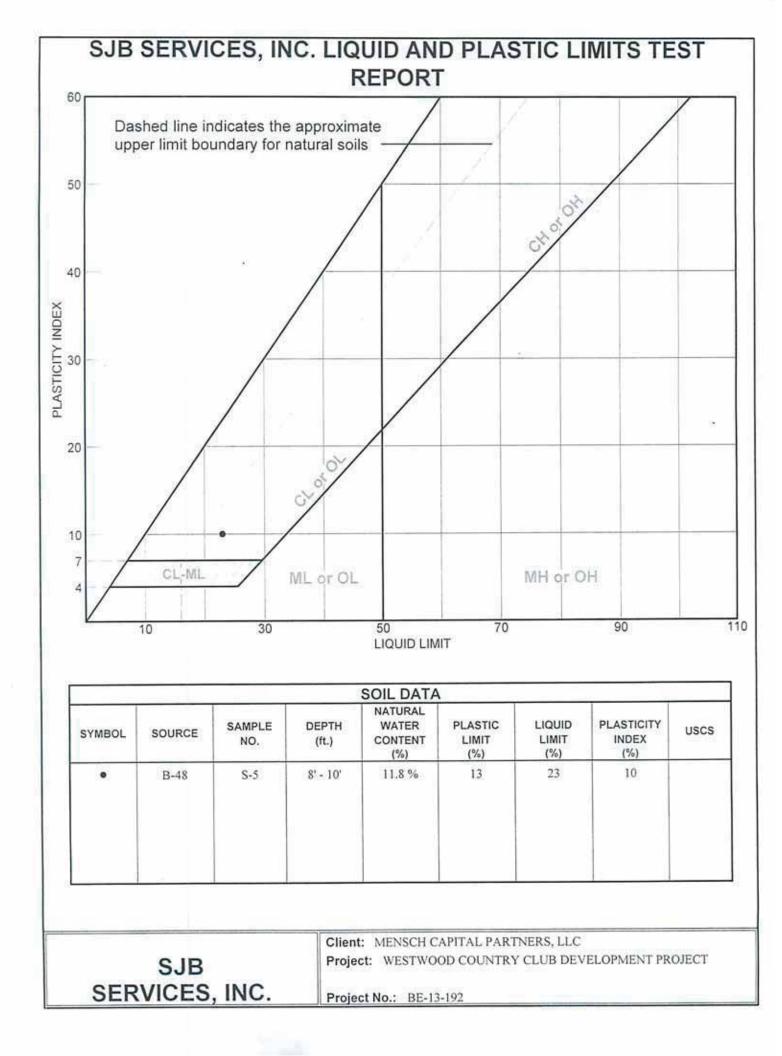
CLIENT: Mensch Capital Partners, LLC.

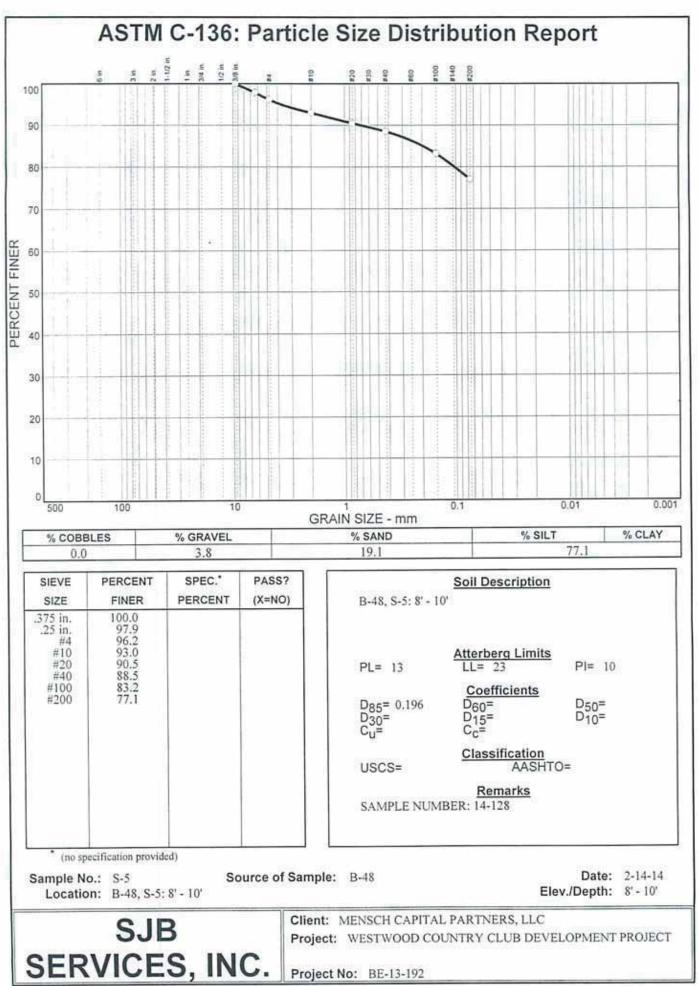
DATE: February 14, 2014

PROJECT NO.: BE-13-192 REPORT NO.: LTR-2 Page 6 of 6

SAMPLE NUMBER: 14-127 SAMPLE LOCATION: B-48, S-5: 8' – 10'

ASTM D-2216: Laboratory Determination of Water (Moisture) Content of Soil & Rock ASTM D-4318: Liquid Limit, Plastic Limit, and Plasticity Index of Soil


Moisture	Liquid	Plastic	Plasticity
Content	Limit	Limit	Index
11.8 %	23	13	10


ASTM D-427: Shrinkage Factors of Soils by the Mercury Method

Value of Initial Water Content = 34.4 % Value of Shrinkage Limit = 14 Value of Shrinkage Ratio = 1.94

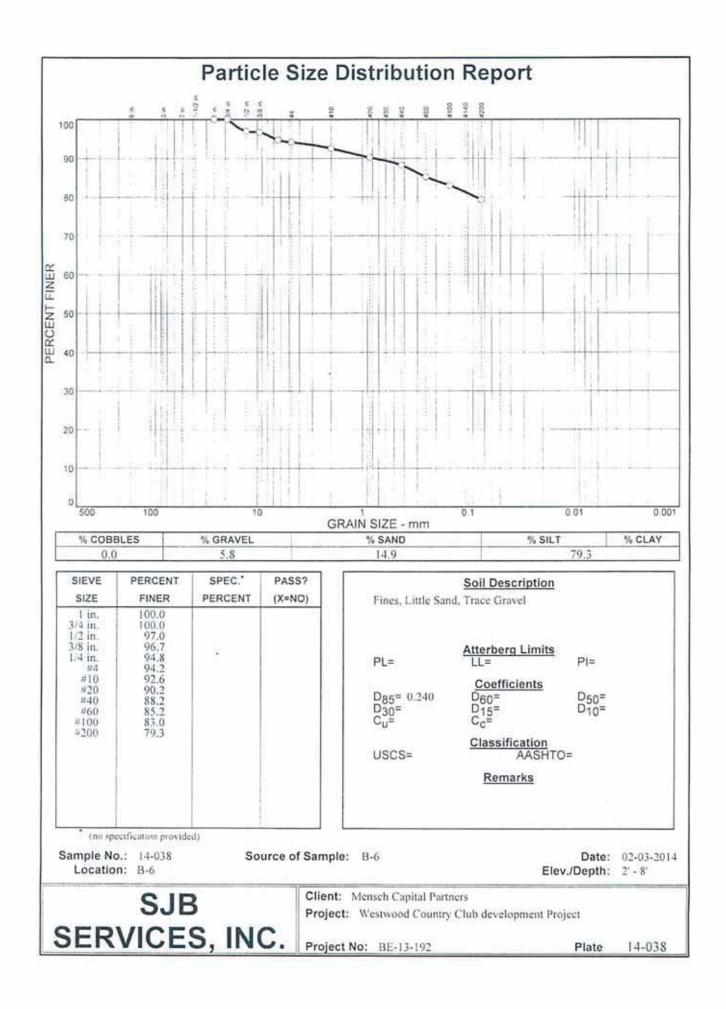
ASTM C-136: Sieve Analysis of Fine and Coarse Aggregates

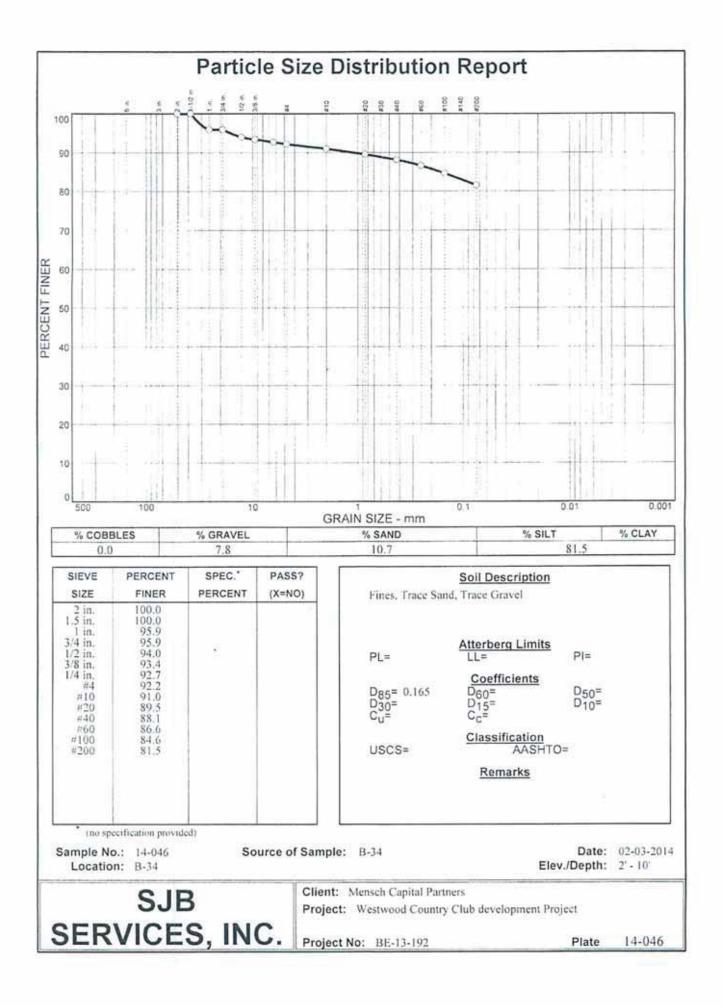
Sieve	Percent
Size	Passing
³ / ₈ "	100.0
1/4"	97.9
#4	96.2
#10	93.0
#20	90.5
#40	88.5
#100	83.5
#200	77.1

Rochester Office 535 Summit Point Drive Henrietta, NY 14467 Phone: 585-359-2730 Fax: 585-359-9668

Summary of Laboratory Testing

Project:	Westwood Country Club Development Project	Date:	02-03-2014
Client:	Mensch Capital Partners		
Project Number:	BE-13-192		


Lab Id#	Location	Depth (ft)	Moisture Content (%)
14-035	B-6, S-2	2-4	4.5
14-036	B-6, S-3	4-6	11.3
14-037	B-6, S-4	6-8	10.3
14-042	B-34, S-2	2-4	6.1
14-043	B-34, S-3	4-6	5.9
14-044	B-34, S-4	6 - 8	12.0
14-045	B-34, S-5	8 - 10	10.1


SJB Laboratory Technician: William Gilmore

Respectfully submitted: SJB Services, Inc.

> Hamburg, New York 800-821-5911

Cortland, New York 800-296-6740

5	1	in the second	and the second second	Γ
	AL AD		É	
	T.C.I	manne	untillinen	5
1114	115.1)_	C	
	1000	1	C.	

Rochester Office 535 Summit Point Drive Henrietta, NY 14467

Westwood Country Club

Project:

LABORATORY D.I.P.R.A. TESTS

Project Number: BE-13-192 Date: 02-03-2014

Client: Mensch Capital Partners

N/A

Town /City.

Technician: William Gilmore

Summary of Laboratory Analysis Soil

Location:	Resistivity (Ohm-cm)	Redox (mv)	, Hd	Sulfides (+,T,-)	% Moisture Content TO (wet, moist, dry)	TOTAL
	Points	Points	Points	Points	Points	FUINIS
B-6 Composite	15,000	-35.2		•	Moist (9.5%)	G
Depth = 2' - 8'	0	5	0	0	1	D
B-34 Composite	11,500	-22.6	6.35	x	Moist (8.9%)	
Depth = $2' - 10'$	0	5	0	0	+	D

Per the Ductile Iron Pipe Research Association (DIPRA), point totals 10 or greater should be considered for Cathodic Protection.

Rochester Office 535 Summit Point Drive Henrietta, NY 14467 Phone: 585-359-2730 Fax: 585-359-9668

Summary of Laboratory Testing

Project:	Westwood Country Club Development Project	Date:	02-03-2014
Client:	Mensch Capital Project		
Project Number:	BE-13-192		

Lab#	Location	Depth (Feet)	Chlorides (ppm)	Sulfates (ppm)
14-038	B-6 Composite	2 – 8	15	ND
14-046	B-34 Composite	2 -10	10	ND

SJB Laboratory Technician: William Gilmore

Respectfully submitted: SJB Services, Inc.

Chuck Guzzetta District Manager

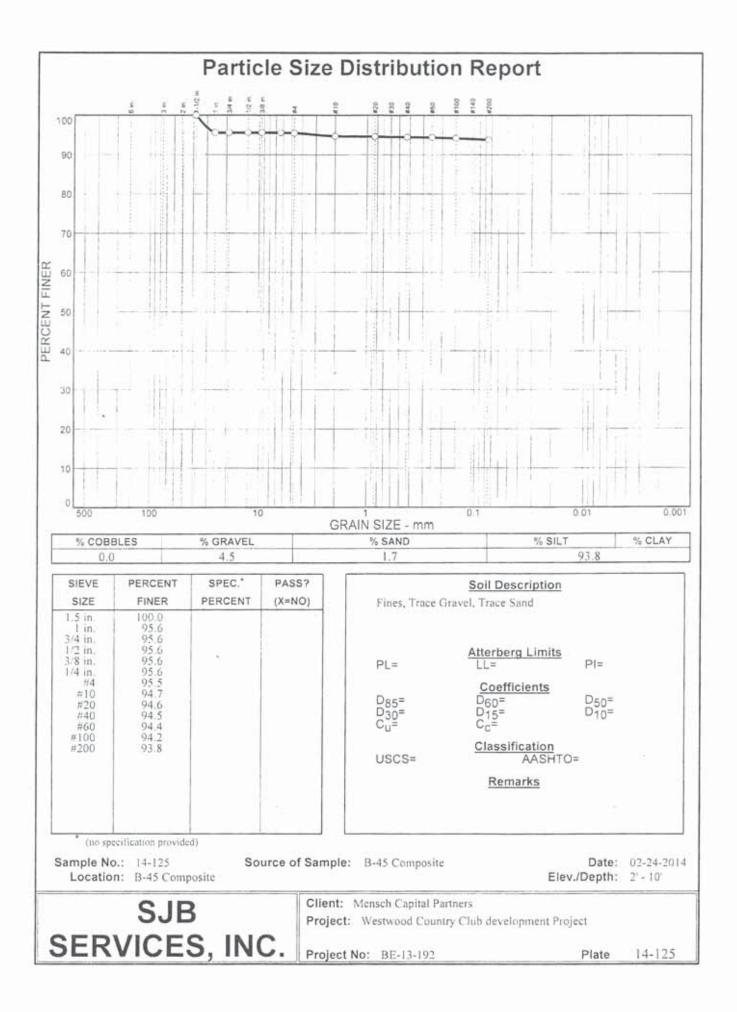
> Hamburg, New York 800-821-5911

Cortland, New York 800-298-6740

Rochester Office 535 Summit Point Drive Henrietta, NY 14467 Phone: 585-359-2730 Fax: 585-359-9668

Summary of Laboratory Testing

Project:	Proposed Westwood Country Club Development Project	Date:	02-24-2014
Client:	Mensch Capital Partners, LLC		
Project Number:			


Lab Id#	Location	Depth (ft)	Moisture Content (%)
14-121	B-45	2 – 4	23.1
14-122	B-45	4 - 6	23.4
14-123	B-45	6 – 8	28.6
14-124	B-45	8 – 10	20.2
14-125	B-45	2 - 10	23.9

SJB Laboratory Technician: William Gilmore

Respectfully submitted: SJB Services, Inc.

> Hamburg, New York 800-821-5911

Cortland, New York 800-296-6740

Rochester Office 535 Summit Point Drive Henrietta, NY 14467

Project: Westwood Country Club

Town /City: N/A

Client: Mensch Capital Partners

Technician: William Gilmore

Summary of Laboratory Analysis Soil

TOTAL		1	
% Moisture Content (wet, moist, dry)	Points	Wet (23.9%)	2
Sulfides (+,T,-)	Points	ŝ	0
Ηd	Points	7.55	0
Redox (mv)	Points	9.0	4
Resistivity (Ohm-cm)	Points	2,700	1
Location:		B-45 Composite	Depth = $2' - 10'$
Lab ID:		30 4 7 6	14-123

Per the Ductile Iron Pipe Research Association (DIPRA), point totals 10 or greater should be considered for Cathodic Protection.

LABORATORY D.I.P.R.A. TESTS

Project Number: BE-13-192 Date: 02-24-2014

Rochester Office 535 Summit Point Drive Henrietta, NY 14467 Phone: 585-359-2730 Fax: 585-359-9668

Summary of Laboratory Testing

Project:	Westwood Country Club Development Project	Date:	02-24-2014
Client:	Mensch Capital Project		
Project Number:	BE-13-192		

Lab#	Location	Depth (Feet)	Chlorides (ppm)	Sulfates (ppm)
14-125	B-6 Composite	2 - 10	18	ND

SJB Laboratory Technician: William Gilmore

Respectfully submitted: SJB Services, Inc.

Chuck Guzzetta District Manager

> Hamburg, New York 800-821-5911

Cortland, New York 800-296-6740

EXISTING SITE INFORMATION

SOIL SURVEY INFORMATION

Unified Soil Classification (Surface)—Erie County, New York (Westwood Country Club)

Conservation Service

Page 1 of 5

Unified Soil Classification (Surface)—Erie County, New York (Westwood Country Club)

			A	MAP LEGEND				
Area of Interest (AOI)		ML-A (proposed)	}	GC	Ş	SP		MH-K (proposed)
Area of Interest (AOI)		ML-K (proposed)	ł	GC-GM	5	SP-SC		MH-O (proposed)
Soils Soil Dating Bolygons		ML-O (proposed)	5	GM	5	SP-SM		MH-T (proposed)
		ML-T (proposed)	ł	GP	5	SW		ML
5 		Ю	5	GP-GC	Ş	SW-SC		ML-A (proposed)
CL-A (proposed)		OH-T (proposed)	2	GP-GM	5	SW-SM		ML-K (proposed)
CL-K (proposed)		OL	ł	GW	5	Not rated or not available		ML-O (proposed)
CL-ML		РТ	2	GW-GC	Soil Ra	Soil Rating Points		ML-T (proposed)
CL-O (proposed)		SC	5	GW-GM		СН		НО
CL-T (proposed)		SC-SM	5	HW		CL		OH-T (proposed)
S S		SM	}	MH-A (proposed)		CL-A (proposed)		OL
GC-GM		SP	2	MH-K (proposed)		CL-K (proposed)		PT
GM		SP-SC	5	MH-O (proposed)		CL-ML		SC
-B		SP-SM	2	MH-T (proposed)		CL-O (proposed)		SC-SM
GP-GC		SW	5	ML		CL-T (proposed)		SM
GP-GM		SW-SC	5	ML-A (proposed)		GC		SP
ew G		SW-SM	2	ML-K (proposed)		GC-GM		SP-SC
GW-GC		Not rated or not available	2	ML-O (proposed)		GM		SP-SM
GW-GM	Soil Rat	Soil Rating Lines	2	ML-T (proposed)		GP		SW
H	ł	СН	}	НО		GP-GC		SW-SC
MH-A (proposed)	Ş	CL	5	OH-T (proposed)		GP-GM		SW-SM
MH-K (proposed)	ł	CL-A (proposed)	}	OL		GW		Not rated or not available
	}	CL-K (proposed)	2	PT		GW-GC	Water Features	atures
	}	CL-ML	2	SC		GW-GM	{	Streams and Canals
	}	CL-O (proposed)	1	SC-SM		МН	Transportation	tation
	}	CL-T (proposed)	2	SM		MH-A (proposed)	Ŧ	Rails

Natural Resources Conservation Service

NSDA

Web Soil Survey National Cooperative Soil Survey

12/13/2013 Page 2 of 5

Unified Soil Classification (Surface)—Erie County, New York (Westwood Country Club)

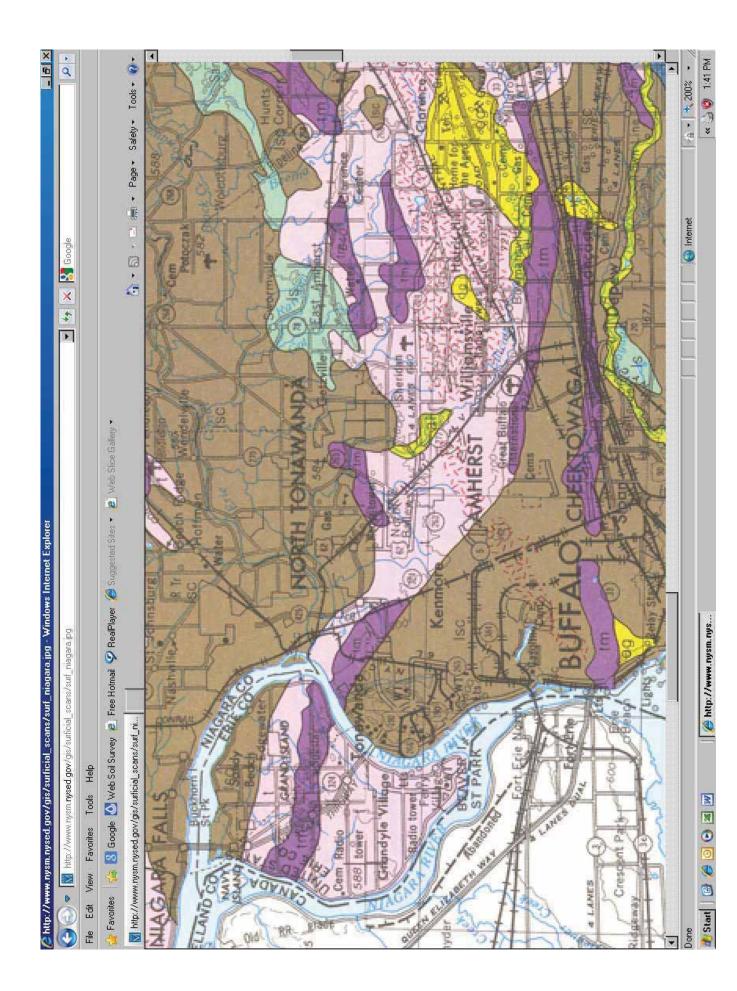
	The soil surveys that comprise your AOI were mapped at 1:15,800.	Please rely on the bar scale on each map sheet for map		Source of Map: Natural Resources Conservation Service Web Soil Survey URI · http://websoilsurvey.nrcs.usda.cov	2	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	Soil Survey Area: Erie County, New York Survey Area Data: Version 11, Dec 1, 2011	Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	Date(s) aerial images were photographed: Jun 2, 2010—Jul 1, 2011	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.			
MAP INFORMATION	Interstate Highways	JUS Routes	Major Roads	Local Roads	Background	Aerial Photography								

Unified Soil Classification (Surface)

Unified S	Soil Classification (Surface	e)— Summary by Map U	nit — Erie County, New York	« (NY029)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CrA	Claverack loamy fine sand, 0 to 3 percent slopes	SM	36.1	14.9%
Cv	Cosad loamy fine sand	SM	25.9	10.7%
La	Lakemont silt loam	CL	8.2	3.4%
Od	Odessa silt loam	ML	77.6	32.0%
SaA	Schoharie silt loam, 0 to 3 percent slopes	CL	7.4	3.1%
SaB	Schoharie silt loam, 3 to 8 percent slopes	CL	41.8	17.2%
Sw	Swormville clay loam	CL	8.2	3.4%
Те	Teel silt loam	CL	15.4	6.3%
Ut	Urban land-Odessa complex		13.4	5.5%
W	Water		2.9	1.2%
Wd	Wayland silt loam	ML	5.9	2.4%
Totals for Area of Inter	rest		242.8	100.0%

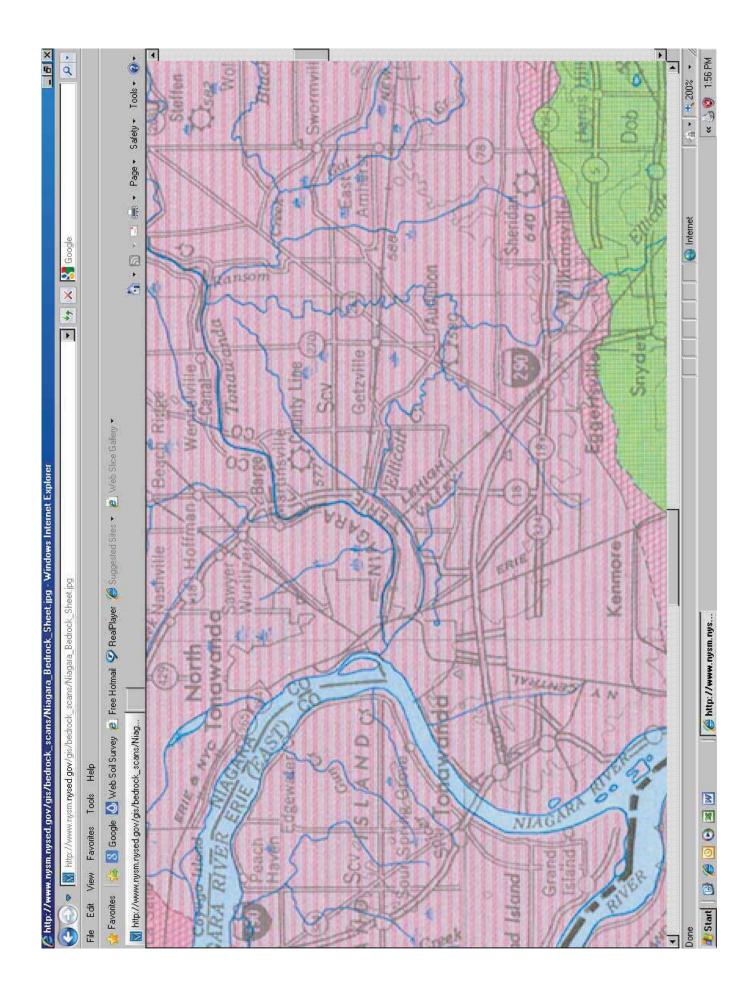
Description

The Unified soil classification system classifies mineral and organic mineral soils for engineering purposes on the basis of particle-size characteristics, liquid limit, and plasticity index. It identifies three major soil divisions: (i) coarse-grained soils having less than 50 percent, by weight, particles smaller than 0.074 mm in diameter; (ii) fine-grained soils having 50 percent or more, by weight, particles smaller than 0.074 mm in diameter; and (iii) highly organic soils that demonstrate certain organic characteristics. These divisions are further subdivided into a total of 15 basic soil groups. The major soil divisions and basic soil groups are determined on the basis of estimated or measured values for grain-size distribution and Atterberg limits. ASTM D 2487 shows the criteria chart used for classifying soil in the Unified system and the 15 basic soil groups of the system and the plasticity chart for the Unified system.


The various groupings of this classification correlate in a general way with the engineering behavior of soils. This correlation provides a useful first step in any field or laboratory investigation for engineering purposes. It can serve to make some general interpretations relating to probable performance of the soil for engineering uses.

For each soil horizon in the database one or more Unified soil classifications may be listed. One is marked as the representative or most commonly occurring. The representative classification is shown here for the surface layer of the soil.

Rating Options


Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Lower Layer Options (Horizon Aggregation Method): Surface Layer (Not applicable)

SURFICIAL AND BEDROCK GEOLOGY

🉆 http://www.nysm.nysed.g	🏈 http://www.nysm.nysed.gov/gis/surficial_scans/surf_niagara.jpg - Windows Internet Explorer	
▲ Mathematical Action // WWW.	🕅 http://www.nysm. nysed.gov /gis/surficial_scans/surf_niagara.jpg	64 🗙 😵 Google
File Edit View Favorites Tools Help	Tools Help	
🔆 Favorites 😽 😵 Google	🔆 Favorites 😘 💈 Google 🙋 Web Soil Survey 🖉 Free Hotmail 父 RealPlayer 麄 Suggested Sites 🔹 🖉 Web Sitce Gallery 🕈	
🕅 http://www.nysm.nysed.gov/gis/sufficial_scans/suff_ni	/gis/surficial_scans/surf_ni	🏠 + 🔊 + 🖃 🌐 + Page + Safety + Tools + 😢 +
	generally more permeable than till, deposition adjacent to ice, more variably drained, may include ablation till, thickness variable (10–30 meters).	
-	t — Till Variable texture (e.g. clay, silt-clay, boulder clay), usually poorly sorted diamict, deposition beneath glacier ice, relatively impermeable (loamy matrix), variable clast content — ranging from abundant well-rounded diverse lithologies in valley tills to relatively angular, more limited lithologies in upland tills, tends to be sandy in areas underlain by gneiss or sandstone, potential land instability on steep slopes, thickness variable (1-50 meters).	e lithologies in vallcy tills to ndy in areas underlain by gneiss
2	r — Bedrock Exposed or generally within 1 meter of the surface.	
	Bedrock stipple overprint Bedrock may be within 1-3 meters of the surface, may sporadically crop out, variable mantle of rock debris and glacial till.	
▲ Done 2 Start 6 6 0 0 1 2 2	 Muwu.nysn.nys 	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►

💫 🗢 🚺 http://www.rysm. rysed.gov /gis/sufficial_scans/suf_niag Edit View Favorites Tools Help	/surficial scans/surf nianara ind		
Favorites Tools		🗾 🛃 🛠 🕺 🖾 Google	· α
Favorites 🛛 🙀 🖇 Google 🙆 Web Soil Survey	🖉 Free Hotmail 📀	RealPlayer 🏈 Suggested Sites ← 🛃 Web Slice Gallery ←	
🚮 http://www.nysm.nysed.gov/gis/surficial_scans/surf_ni	'surf_ni		🟠 + 🔊 - 🖃 🖏 + Page + Safety + Tools + 🕡 -
Les La		thickness variable (up to 100 meters); stipple overprint where bedrock is within 1-3 meters of the surface.	≜ face.
	<u>00</u>	Is — Lacustrine sand Sand deposits associated with large bodies of water, generally a near-shore deposit or near a sand source, well sorted, stratified, generally quartz sand, thickness variable (2-20 meters).	
	<u>6</u> 0	og — Outwash sand and gravel Coarse to fine gravel with sand, proglacial fluvial deposition, well rounded and stratified, generally finer texture away from ice border, may be calcreted beyond Wisconsinan glacial limit,	
a surface of the second s	βj	fg — Fluvial gravel Same as outwash sand and gravel, except deposition farther from glacier, age uncertain.	
	×	k — Kame deposits Includes kames, eskers, kame terraces, kame deltas, coarse to fine gravel and/or sand, deposition adjacent to ice (if at ice margin, relief is below elevation of associated o	tion of associated or
		Internet Internet	🖓 + 🔍 200% - 🥢
(c)	📕 🕎 Report Text.DOC - Micr	- Micros 🏉 http://www.nysm.nys	< 🧐 8:16 AM

http://www.n	/sm.nysed.gov/gis/bedrock_scans/Ni	agara_Bedroc	Vindows Internet Explorer	× Q I
	Ittp://www.nysm.nysed.gov/gis/bedrock_scans/Niagara_Bedrock_Sheet.jpg	cans/Niagara_Be	drock_Sheet.pg	<u>,</u>
File Edit View	View Favorites Tools Help			
🗼 Favorites 🙀	🛐 Google 🚺 Web Soil Survey 😰	Free Hotmail 👽 R	👽 RealPlayer 🎉 Suggested Sites 👻 🖉 Web Sites Gallery 👻	
M http://www.nys	🕅 http://www.nysm.nysed.gov/gis/bedrock_scans/Niag	_	🚮 + 🔂 - 🔤 👘 - Page - Safety - Tools - 😰	🔸 Taols • 🔞 •
Lower		Do	Bois Blanc Formation—dolostone, limestone, sand- stone (Springvale). Oriskany Sandstone.	
)(AKRON DOLOSTONE AND SALINA GROUP 400-700 ft. (120-210 m.)	
ue	Sab	Sab	Akron Dolostone; Bertie Formation—dolostone, shale. Camillus, Syracuse, and Vernon Formations—shale, dolostone, salt, and gypsum.	
er Siluri	Scv		LOCKPORT GROUP 150-200 ft. (45-60 m.)	
oddU	SI	SI	Guelph, Oak Orchard, Eramosa, and Goat Island Dolostones; Gasport Limestone—local bioherms.	
			CLINTON GROUP 100-150 ft. (30-45 m.)	
	S	Scl	Decew Dolostone; Rochester Shale; Irondequoit and Merriton Limestones.	
	l.	Sr	Decew Dolostone; Rochester Shale.	
ncian	Sik	Sik	Irondequoit Limestone; Rockway Dolostone; Hickory Corners Limestone; Neahga Shale; Kodak Sandstone.	
Done				▲ + 150% +
Start 📴 🔏	🐮 Start 📔 🍘 🗿 🕤 🖼 🜌	🏉 http://www.nysm.nys		« 🍐 🌍 1.59 PM

FLOOD PLAIN MAPPING

APPENDIX D

GEOTECHNICAL REPORT LIMITATIONS

GEOTECHNICAL REPORT LIMITATIONS

Empire Geo-Services, Inc. (Empire) has endeavored to meet the generally accepted standard of care for the services completed, and in doing so is obliged to advise the geotechnical report user of our report limitations. Empire believes that providing information about the report preparation and limitations is essential to help the user reduce geotechnical-related delays, cost over-runs, and other problems that can develop during the design and construction process. Empire would be pleased to answer any questions regarding the following limitations and use of our report to assist the user in assessing risks and planning for site development and construction.

PROJECT SPECIFIC FACTORS: The conclusions and recommendations provided in our geotechnical report were prepared based on project specific factors described in the report, such as size, loading, and intended use of structures; general configuration of structures, roadways, and parking lots; existing and proposed site grading; and any other pertinent project information. Changes to the project details may alter the factors considered in development of the report conclusions and recommendations. Accordingly, Empire cannot accept responsibility for problems which may develop if we are not consulted regarding any changes to the project specific factors that were assumed during the report preparation.

SUBSURFACE CONDITIONS: The site exploration investigated subsurface conditions only at discrete test locations. Empire has used judgement to infer subsurface conditions between the discrete test locations, and on this basis the conclusions and recommendations in our geotechnical report were developed. It should be understood that the overall subsurface conditions inferred by Empire may vary from those revealed during construction, and these variations may impact on the assumptions made in developing the report conclusions and recommendations. *For this reason, Empire should be retained during construction to confirm that conditions are as expected, and to refine our conclusions and recommendations in the event that conditions are encountered that were not disclosed during the site exploration program.*

USE OF GEOTECHNICAL REPORT: Unless indicated otherwise, our geotechnical report has been prepared for the use of our client for specific application to the site and project conditions described in the report. *Without consulting with Empire, our geotechnical report should not be applied by any party to other sites or for any uses other than those originally intended.*

CHANGES IN SITE CONDITIONS: Surface and subsurface conditions are subject to change at a project site subsequent to preparation of the geotechnical report. Changes may include, but are not limited to, floods, earthquakes, groundwater fluctuations, and construction activities at the site and/or adjoining properties. *Empire should be informed of any such changes to determine if additional investigative and/or evaluation work is warranted.*

MISINTERPRETATION OF REPORT: The conclusions and recommendations contained in our geotechnical report are subject to misinterpretation. *To limit this possibility, Empire should review project plans and specifications relative to geotechnical issues to confirm that the recommendations contained in our report have been properly interpreted and applied.*

Subsurface exploration logs and other report data are also subject to misinterpretation by others if they are separated from the geotechnical report. This often occurs when copies of logs are given to contractors during the bid preparation process. *To minimize the potential for misinterpretation, the subsurface logs should not be separated from our geotechnical report and the use of excerpted or incomplete portions of the report should be avoided.*

OTHER LIMITATIONS: Geotechnical engineering is less exact than other design disciplines, as it is based partly on judgement and opinion. For this reason, our geotechnical report may include clauses that identify the limits of Empire's responsibility, or that may describe other limitations specific to a project. These clauses are intended to help all parties recognize their responsibilities and to assist them in assessing risks and decision making. Empire would be pleased to discuss these clauses and to answer any questions that may arise.

Phase 1A Cultural Resource Investigation Westwood Country Club Property Town of Amherst, Erie County, New York

OPRHP 12PR4942

JANUARY, 2013

PREPARED FOR:

MENSCH CAPITAL PARTNERS, LLC 350 Essjay Road Williamsville, New York 14221

PREPARED BY:

Robert L. Dean

HERITAGE PRESERVATION & INTERPRETATION INC. P.O. BOX 277 STEAMBURG, NY 14783-0277 Project Review No.: 12PR4942 Project Name: Westwood Country Club Town of Amherst, Erie County, New York Involved State and Federal Agencies: NYS OPRHP, DEC, Location Information: Location: South of Maple Road north of Sheridan Drive, immediately west of Ellicott Creek. Minor Civil Division: Town of Amherst (County: Erie Survey Area: Number of Acres (Hectares) in Project: ± 170 Acres (± 68.8 hectares) USGS 7.5' Quad: Buffalo NE (date) Archaeological Survey Overview: No formal field survey was completed for this location since the investigation was limited to the Phase 1A level. Number and Size of Units: Not applicable. Results of Archaeological Survey: No field survey conducted. **Results of Architectural Survey:** Number of buildings/structures /cemeteries within the project area: Unspecified Number of buildings/structures/cemeteries adjacent to the project area: In excess of thrity structures nearby since the project area adjoins residential subdivisions. Number of previously determined NR listed or eligible buildings/structures/cemeteries/districts: None Number of identified eligible buildings/structures/cemeteries/districts: None to date.

Report Author(s): <u>Robert L. Dean, Heritage Preservation and Interpretation Inc.</u>

Date of Report: January 7, 2013

Management Summaryi
Table of Contentsii
Executive Summary1
Phase 1A Report
Table 1: Cultural Resources Recorded within
Approximately One Mile of the Project Area5
Figure 1: General Project Location Map7
Figure 2: Project Location and Topography8
Figure 3: Soils Map9
Table 2: Soils Data 10
Figure 4: Distribution of Selected Archaeological Sites within
ca. Two Miles11
Figure 5: A Portion of Geil's 1854 Map of Erie County, New York12
Figure 6: A Portion of Stone & Stewart's 1866 Map of
Erie County, New York
Figure 7: A Portion of F.W. Beers' map of the Town of Amherst,
Erie County, New York14
Figure 8: A Portion of the 15 minute Buffalo (1901/1940) and
Tonawanda (1900) topographic maps
Figure 9: A Portion of the 1909 New Century Atlas of the Town of Amherst,
Erie County, New York16
Figure 10: 1927 Aerial Photograph of the Project Area and Surrounding Area
Town of Amherst, Erie County, New York17
Figure 11: Detail—1927 Aerial Photograph of the Project Area18
Figure 12: Portions of the 15 minute Buffalo and Tonawanda topographic
maps, 1948
Figure 13: 1951 Aerial Photographs of the Project Area
Figure 14: 1994-2011 Aerial Photographs of the Project Area21
Table 3: Summary of Historic Map Data, Westwood Country Club Locality22
Supportive Data
References and Sources

Applicant Name	Mensch Capital Partners, LLC 350 Essjay Road Williamsville, New York 14221		
Project/Facility 1	ame: Westwood Country Club		
OPRHP Project R	eview No.: 12PR4942		
Project/Facility I	ocation: South of Maple Road, north of Sheridan Drive and immediately west of Ellicott Creek.		
Recommendation	s of the Phase 1A Report		
	No additional work recommended		
\checkmark	Additional work recommended		
Results of the Ph	se 1B Report PHASE 1A ONLY		
	No sites found in project area		
	Sites found in project area		
Recommendation	s of the Phase 1B Report PHASE 1A ONLY		
	No additional work recommended		
	Additional work recommended		
	Phase 2 Report Attached 🛛 Yes 🔅 No		
	Project should be modified to avoid site(s)		
	Applicant should seek direction from DEC/OPRHP as to need for additional work		
Recommendation	s of the Phase 2 Report (If appropriate) PHASE 1A ONLY		
	Site(s) do not appear to meet the criteria of the NY State Register of Historic Places		
	Site(s) do appear to meet the criteria of the NY State Register of Historic Places		
	Project should be modified to avoid site(s)		
	An opinion should be obtained from the NYS Office of Parks, Recreation and Historic Preservation (OPRHP) on the significance of the site(s)		

Summary Prepared By:Robert L. Dean, Heritage Preservation & Interpretation Inc.Date:January 7, 2013

This page intentionally blank.

CULTURAL RESOURCE INVESTIGATION PHASE 1A REPORT

Applicant Name:	Mensch Capital Partners, LLC	
	350 Essjay Road	
	Williamsville, New York 14221	
Project/Facility Name:	Westwood Country Club	
1, , ,		
OPRHP Project Review No.: 12PR4942		
Project/Facility Location:	South of Maple Road, north of Sheridan Drive and immediately west of	
	Ellicott Creek.	
	Lincolt ofeck.	

Description of Project: Specific development plans are unknown but expectations are for the construction of commercial or residential structures

Description of Impacts: Unspecified but expected to be severe ands to include stripping of topsoil, excavation for foundations, construction of utilities and other infrastructure, grading/filling.

Total Area of Project Site:	$\pm 170 \text{ acres} (\pm 68.8 \text{ hectares})$
Total Area to be Impacted:	less than 170 acres (<68.8 hectares)

ENVIRONMENTAL INFORMATION

Topography: Level to rolling terrain elevations of ca. 590 to 600 feet (± 180 to 183 meters). The project is located on the Erie-Ontario Lake Plain, the northern extension of the greater Central Lowlands physiographic province. The current topography has been altered to varying extents by the current and former land use on this tract as a golf course.

Geology: Western New York is underlain by sedimentary bedrock that derive from the Lower Paleozoic period. These strata generally consist of sandstone, siltstone, mudstone, shale, limestone, etc. The bedrock outcrops in some of the more deeply cut stream channels and along road and railway cuts. Some of those outcrops include chert deposits which were used as a raw material for chipped stone tools throughout the pre-contact period.

All of this portion of Erie County was glaciated and surface deposits can include glacial till, outwash and glacial lake sediments. Commercially valuable deposits of sand and gravel occur in the county as a result of glacial deposition.

Soils: The location is mapped within six separate soil types: Claverack loamy fine sand, Cosad loamy fine sand, Lakemont silt loam, Odessa silt loam, Schoharie silt loam and Teel silt loam (Figure 3, Table 2).

Drainage: The project is within the greater St. Lawrence river drainage system. The local drainage is provided by Ellicott Creek which is adjacent to portions of the project on the east. Ellicott Creek is a northwesterly trending stream that empties into Tonawanda Creek. That stream empties into the Niagara River and thence to Lake Ontario.

Vegetation: Since this is an active golf course the predominant vegetation cover is grass. There are also trees that have been planted along fairways and in other locations as part of the general golf course landscaping scheme. One vegetated zone that has persisted since at least 1927 is located in the northwest quarter of the property.

Forest Zone: This region is within the Northern Hardwoods/Eastern Deciduous Hardwoods Forest (Hunt 1974, Elias 1980). This zone marks the furthest extent of some southern species and the southern extent of some northern species. Trees tend to develop in associations that are based on similarities in elevation, soils, drainage and aspect (facing of the terrain). Manmade Features and Alterations: The project area is within a golf course and has been subject to a variety of previous disturbances including landscaping (tees, traps, greens), drainage and water system construction, pathways, and construction of several structures and parking areas.

DOCUMENTARY RESEARCH

- 1. Site Files (within 1 mile)
 - Statewide Inventory of Historic Properties
 - ☑ State Register of Historic Places
 - ☑ National Register of Historic Places
 - State/National Register Eligible
 - SUNY Buffalo Highway Archaeological Survey

Sensitivity Assessment/Site Prediction

Archaeological sensitivity for pre-contact sites is rated as moderate to high on the basis of the number of nearby recorded sites, generally level terrain and the proximity to a major waterway. As can be seen in Figure 4 the majority of sites tend to follow the course of Ellicott Creek.

Sensitivity for historic properties is generally low based on a review of historic maps and atlases available for the township. Specific locations of historic (mid/late-19th century to early-20th century) resources appeared restricted to the areas adjacent to earlier roadways in the southern part of the property.

The general lack of recorded properties directly within the project area is a reflection of a lack of previous examination rather than an indication of any lack of habitation.

Historic Map Review

1854, Map of Erie County, New York Figure 5 1866, Stone and Stewart Figure 6 1880, F.W. Beers, Illustrated Historic Atlas of Erie County, New York. Figure 7 1900/1901, 15 minute topographic maps (Buffalo NE and Tonawanda) Figure 8 1909, New Century Atlas of Erie County, New York Figure 9 1915, New Century Atlas of Greater Buffalo, Vol. 3 (not illustrated) 1927, Aerial Photographs Figures 10 and 11 1948, 15 minute topographic maps (Buffalo NE and Tonawanda) Figure 12 1951 Aerial Photographs Figure 13 1994—2011 Aerial Photographs Figure 14 Summary information derived from historic map data is presented as Table 3.

Recommendations: A Phase 1B investigation is recommended but the requirements should consider that prior disturbance in many locations has been sufficient to preclude the necessity of general subsurface testing. Once a specific site/project plan has been produced then the grounds need to be inspected and determinations made as to the need for, and type of, testing to be done. This site-specific testing program should be sufficient to identify extant resources.

Attachments/Exhibits

\checkmark	General Location Map	Figure 1
\checkmark	Topographic Map	Figure 2
	Project Map/Site Plan	
\checkmark	Site File Information	Table 1 and Figure 4
\checkmark	Other (specify)	Figures 5 through 14

Phase 1A Report Prepared By:Robert L. Dean, Heritage Preservation & Interpretation IncDate:January 7, 2013

Tab	Data obtained f	rom SUNY Buffalo Arc	Approximately One Mile of chaeological Survey and NYS f Amherst, Erie County, New	s oprhp
ite Number(s)	Site Name(s)	Distance from APE m(ft)	Time Period	Site Type
2902.0000256 UB 2788	J. Getz	Adjacent 655m (2149') from center	Historic, Euro-American, ca. 1830	Residence
02902.000023	Foundation	887m (2910')	Historic, Euro-American	Structure
02902.000036 UB 2121	Indian Trail	1202m (3944')	Prehistoric Late Archaic (Brewerton)	Camp
02902.000037 UB 2122	Sad Sun	1307m (4288')	Prehistoric Unidentified affiliation	Lithic scatter
02902.000083 UB 2212	Georger	1414m (4639')	Prehistoric Unidentified affiliation	Camp
UB 864	Ellicott Creek	1161m (3809')	Prehistoric Unidentified affiliation	Lithic scatter
UB 1488	Seventeenth Green	1174m (3852')	Prehistoric Unidentified affiliation	Camp
02902.000885	Meadowbrook	1591m (5220')	Prehistoric Unidentified affiliation	Lithic scatter
02902.000004 UB251	UB Campus Amherst Area A	1615m (5229')	Prehistoric Unidentified affiliation	Unspecified
UB 1576	Ellicott Creek 2	1665m (5463')	Prehistoric Unidentified affiliation	Stray find
02902.000452	MCI 04/37-1	1682m (5518')	Prehistoric	Unknown
02902.000454	MCI 04/48-1	1770m (5807')	Unspecified	Unspecified
02902.000002 UB 222	UB Campus Amherst Area 2	2015m (6611')	Prehistoric Unidentified affiliation	Stray find
02902.000244 UB 2733	Park School	2107m (6913')	Prehistoric Unidentified affiliation	Unspecified
02902.000015 UB 895	UB Amherst Campus West	2160m (7087')	Prehistoric Unidentified affiliation	Lithic scatter
02902.000?? UB 196	UB Campus Amherst Area 1	2170m (7119')	Prehistoric Unidentified affiliation	Unspecified
02902.000003 UB 232	UB Campus Amherst Area 3	2180m (7152')	Prehistoric Unidentified affiliation	Stray find
02902.000090 UB 2489	Oswald- Burgasser	2300m (7546')	Historic, Euro-American ca. 1855	Residence
02902.000006 UB 252C	UB Campus Amherst Area 'C'	2300m (7546')	Prehistoric Unidentified affiliation	Unspecified

Site Number(s)	Site Name(s)	Distance from APE m(ft)	Time Period	Site Type
02902.000007 UB 252D	UB Campus South	2332m (7651')	Prehistoric Unidentified affiliation	Unspecified
02902.000018 UB 1251	Stahl Road	2338m (7671')	Prehistoric Unidentified affiliation	Lithic scatter
UB 2415	Old Millersport Road	2387m (7831')	Prehistoric Unidentified affiliation	Camp
02902.000039	Centerpoint Chert Quarry	2445m (8022')	Prehistoric, Multiple Affiliations	Quarry
02902.000244	Park School	2455m (8054')	Prehistoric Unidentified affiliation	Information from a local collection
02902.000006 UB 260	UB Campus Amherst Area 4	2498m (8196')	Prehistoric Unidentified affiliation	Stray find
02902.000077	Centre House Tavern	2534m (8314')	Historic, Euro-American	Presumably an Historic Tave
UB 2039	Dickson's Nightmare	2570m (8432')	Historic, Euro-American	Residence
02902.000896	Reist Mill Complex	2598m (8524')	Historic, Euro-American	Historic Mill
UB 2676	UB Letchworth Woods	2795m (9173')	Prehistoric Unidentified affiliation	Lithic scatter
UB 1888	Amherst 79-2	2827m (9275')	Prehistoric, Late Archaic	Camp
UB 1887	Amherst 79-1	2839m (9314')	Prehistoric Unidentified affiliation	Camp
02902.000188	Parker, Erie Site 81	2904m (9528')	Prehistoric Unidentified affiliation	Workshop
Sit			proximately one mile of the provint near the center of the provint near the provint near the provint near the provint near t	

The sites identified in Table 1 include six properties that date from the Historic period. In this case all appear to be of 19th century construction. The sites break down as: 1 mill, 1 undefined structure location, 1 tavern and 3 residences.

Prehistoric sites include twenty-five properties. Two were listed as Archaic camps and the remainder were not identified with any specific cultural affiliation. The unaffiliated sites were categorized as follows: 6 camps, 6 lithic scatters, 4 stray finds, 1 workshop (presumably a lithic workshop), 1 chert quarry (very probably used during multiple stages of prehistory), 1 site obtained from a local collection, and 4 properties of unknown or unspecified type.

One site was noted on base maps but had no good data associated on either its date of occupation or type.

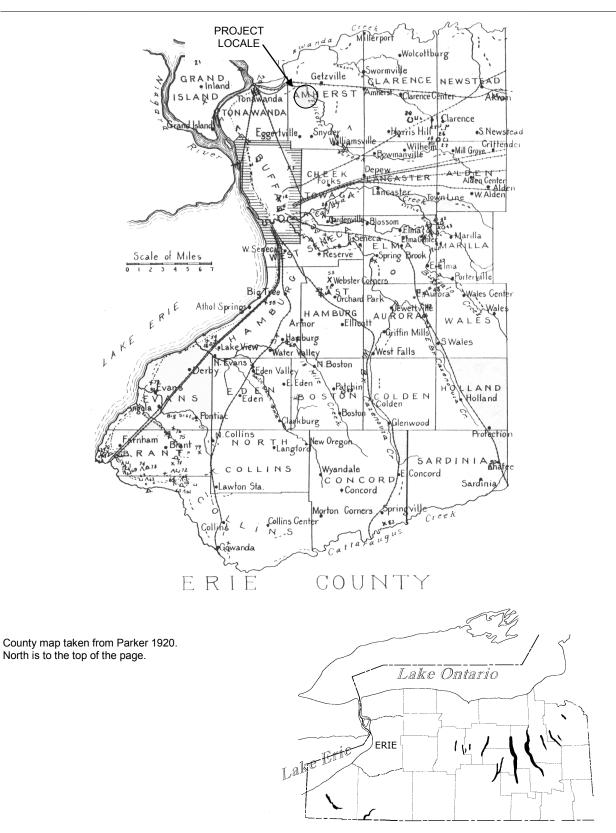


Figure 1: General Project Location Map Westwood Country Club; Town of Amherst, Erie County, New York

Figure 2: Project Location and Topography Westwood Country Club; Town of Amherst, Erie County, New York Portions of USGS 7.5' Buffalo NE, Lancaster, Tonawanda E, and Clarence Center quadrangles

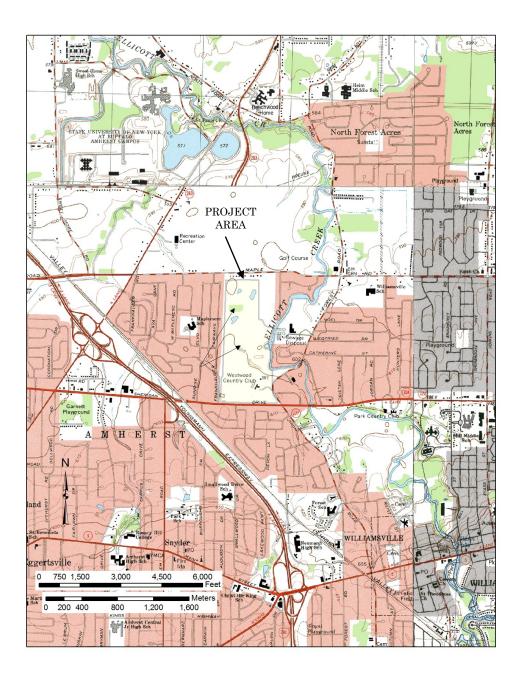


Figure 3: Soils Map—Westwood Country Club Information obtained from USDA Soil Data Mart

Table 2: Soil Data (USDA Official Soil Series Description) Westwood Country Club Town of Amherst, Erie County, New York				
Name	Soil Horizon Depth cm (in)	Color	Texture, Inclusions	Drainage and Landform
Cl—Claverack loamy fine sand	Ap: 0-20cm (0-8 in) Bw1: 20-33cm (8-13 in) Bw2: 33-46cm (13-22 in) BC: 46-81cm (22-32 in) 2C: 81-183cm (32-72 in)	VDkGBrn YBrown YBrown Pale Brown Reddish Brown	Loamy fine sand Loamy fine sand Loamy fine sand Loamy fine sand Silty clay	"very deep, moderately well drained", "formed in sandy deposits that overlie clayey lacustrine sediments", "in shallow deltas on lake plains", "prime farmland"
CrA—Cosad loamy fine sand	Ap: 0-23cm (0-9in) Bw1: 23-53cm (9-21in) Bw2: 53-76cm (21-30in) 2C: 76-183cm (30-72in)	VDk Brown Pale Brown Brown Reddish Brown	Loamy fine sand Loamy fine sand Loamy fine sand Silty clay	"very deep, somewhat poorly drained", "formed in sandy deposits that overlie clayey lacustrine sediments", "on lake plains", "Prime farmland if drained"
La—Lakemont silt loam	Ap: 0-20cm (0-8 in) Btg1: 20-43cm (8-17 in) Btg2: 43-66cm (17-26 in) C: 66-152cm (26-60in)	Black Gray Pinkish Gray Dk reddish gray	Silty clay loam Silty clay Silty clay Silty clay loam	"deep, poorly drained soils of lake plains", "formed in very slowly permeable reddish colored clayey lacustrine sediments"
Od –Odessa silt loam	Ap: 0-20cm (0-8in) Bt/E: 20-25cm (8-10 in) Bt1: 25-38cm (10-15 in) Bt2: 38-64cm (15-25 in) C: 64-183cm (25-72 in)	Dk G Brown Brown Reddish brown Dk RBrown Dk RGray	Silt loam Silty clay loam Silty clay Silty clay Silty clay	"very deep, somewhat poorly drained soils formed in clayey lacustrine deposits" "in moderately low areas on lake plains", "Prime farmland if drained"
SaB— Schoharie silt loam	Ap: 0-20cm (0-8in) E: 20-28cm (8-11 in) Bt/E: 28-46cm (11-18 in) Bt: 46-83cm (18-33 in) C1: 83-132cm (33-52 in) C2: 132-183cm (52-72 in)	Dark Brown Pale Brown Reddish Brown Reddish Brown Reddish Brown Reddish Brown	Silt loam Silt loam Silty clay Clay Silty clay Silty clay	"very deep, moderately well drained soils formed in lacustrine sediments. They are on glacial lake plains and uplands mantled with lake sediments", "Prime farmland"
Te—Teel silt loam	Ap: 0-25cm (0-10 in) Bw1: 25-46 (10-18 in) Bw2: 46-61cm (18-24 in) BCg: 61-97cm (24-38 in) CgL 97-183cm (38-72 in)	VDKGrBrown DkGrBrown Brown Grayish Brown DkGrBrown	Silt loam Silt loam Silt loam Silt loam Silt loam	"very deep, moderately well drained soils on floodplains. They formed in nearly level, silty alluvial deposits", "Prime farmland"
KEY: Shade: Color: Soils: Other:	Brn–Brown, Blk–Black, Gr YBrn–Yellow Brown, OGM Cl–Clay, Lo–Loam, Si–Silt	y–Gray, GBrn–Gra 1–Orange/Gray Mo , Sa–Sand, Ls–Loe	ottled, YGM-Yellow/ ss	ong Brown, RBrn–RedBrown, Gray Mottled

There were at least sixty-one archaeological sites recorded within a ca. two mile radius of the project area. Within roughly one mile there were thirty-two sites evident and none were located directly within the project area and only one was adjacent. Twenty-five sites dated from the prehistoric period and included camps, lithic scatters, stray finds, a chert quarry, a lithic workshop, and several sites that were not, or could not be, defined. Historic Euro-American properties included a mill complex, a tavern, an undifferentiated structure location, and three residences. One property had no data on either occupation or function.

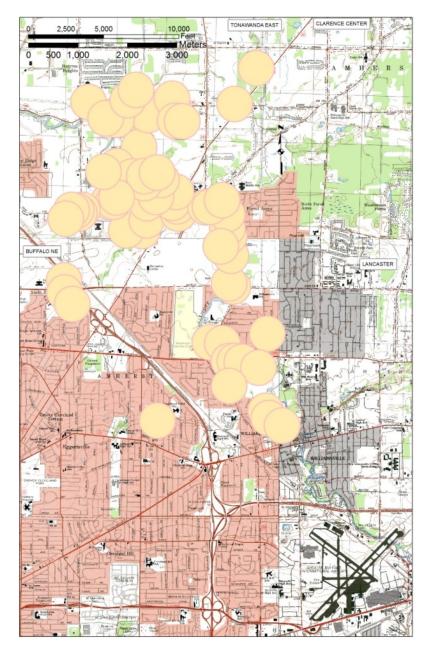
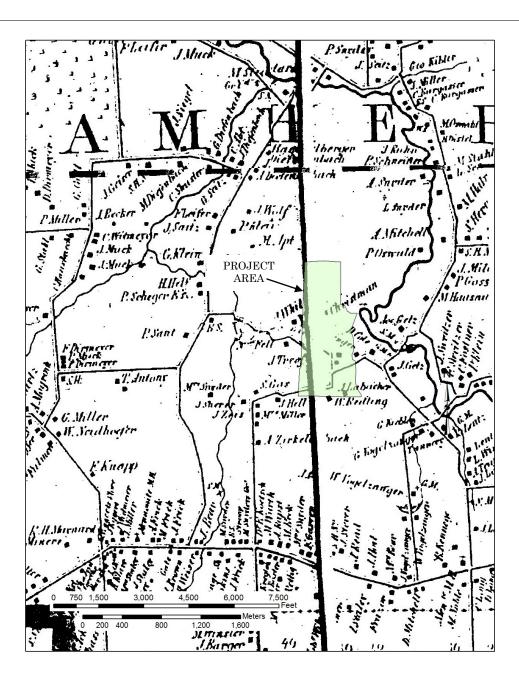



Figure 4: Distribution of Selected Archaeological Sites within ca. Two Miles Map indicates that the majority of properties trend along the course of Ellicott Creek.

Georeferencing of this map is not precise but the general location is appropriate. Roadways and several residences ("D. Cole", "Christman") and are indicated within the property.

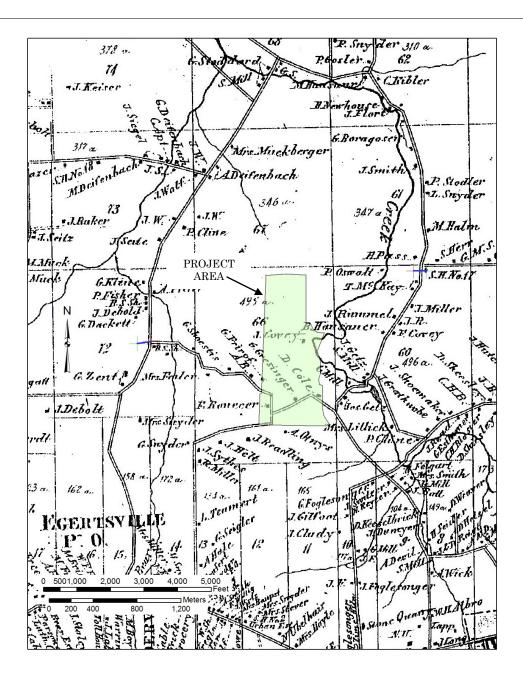


Figure 6: A Portion of Stone & Stewart's 1866 Map of Erie County, New York

Roads shown on 1854 map are still present. Neither Maple Road or Sheridan Drive have been constructed. Residences along the southern roadways are listed for "G. Gresinger" and "D. Cole". The structure previously noted identified as Christman's is now shown as the residence of "J. Covey".

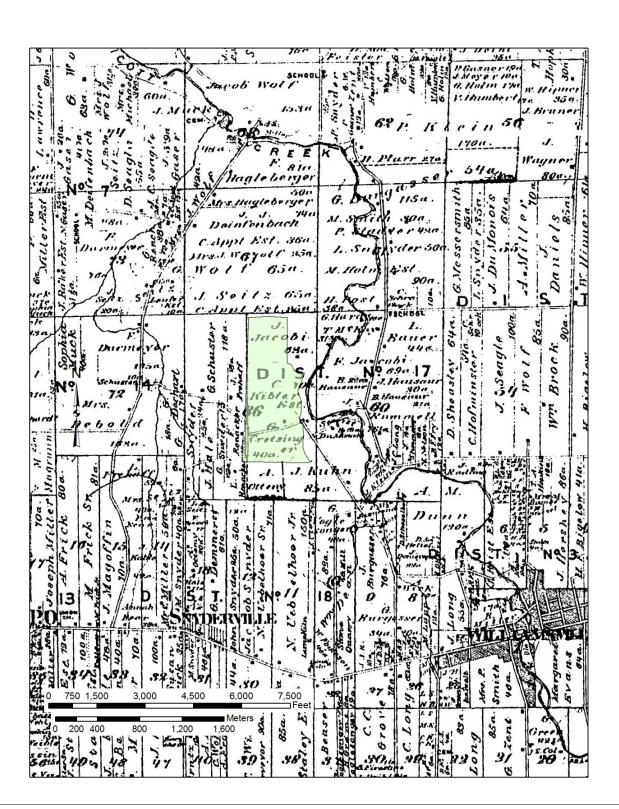


Figure 7: A Portion of F.W. Beers 1880 Map of the Town of Amherst, Erie County, New York

Phase 1aCultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York

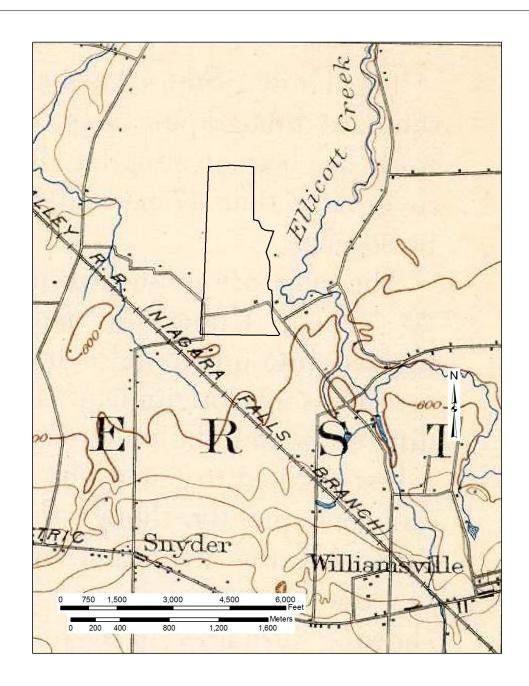


Figure 8: A Portion of the 15 minute Buffalo (1901/1940) and Tonawanda (1900) topographic maps

Roadways in the southern part of the property persist. Structure symbols along the north side of the road maintain the same positions as previously noted "Gretsinger" and "Cole" residences. No activity is apparent across the remainder of the property.

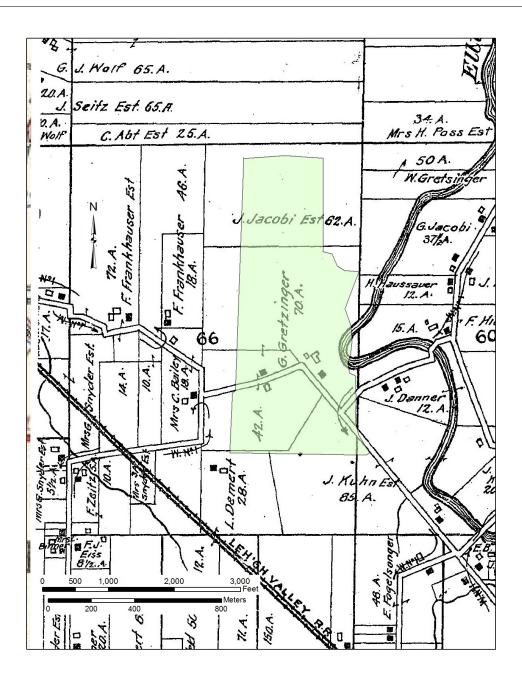
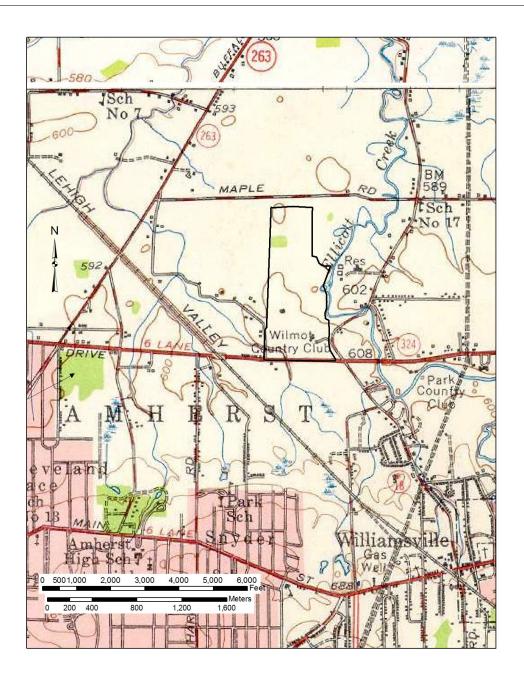
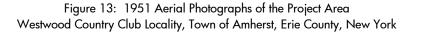
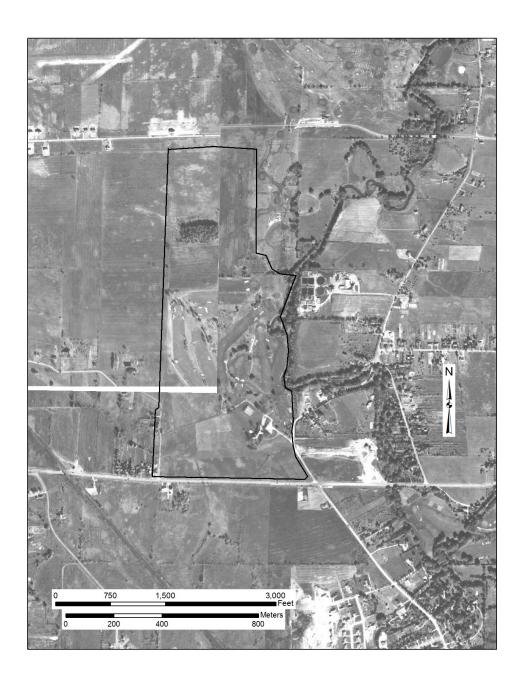


Figure 9: A Portion of the 1909 New Century Atlas, Town of Amherst, Erie County, New York A 1915 version of this map also exists but it is identical to the 1909 version in this specific area.

Georeferencing is not precise and appears to have displaced the project area to the east of its actual location. The majority of the area is attributed to "G. Gretzinger"(sic). Two residential structures are shown in the general locations where these have been previously plotted. This map provides additional detail in indicating that the western structure had an associated barn or similar outbuilding on the south side of the road. The eastern structure is associated with two structures to the northwest.


Figure 10: 1927 Aerial Photograph of the Project Area and Surrounding Portions of the Town of Amherst, Erie County, New York


Figure 11: Detail -1927 Aerial Photograph of the Project Area Town of Amherst, Erie County, New York


- A. Single large structure
- B. Area of former Grets(z)inger Residence/complex
- C. Area of former Cole/Gretzinger residence/complex
- D. General area of country club buildings
- E. Extinct meander/channel of Ellicott Creek
- F. Orchard and several apparent small structures

Several fairways, greens and hazards are apparent. Most of the areas on north and south ends of the property are relatively undisturbed at this date.

The country club building sare more pronounced and the limits of the golf course do not appear to have exceeded those evident on the 1927 aerials. Roadways from the 19th century are apparent but probably used only internally. Wooded tract in northwest first noted on 1927 aerials is present.

1994 Color Infra-red

2002 Natural Color

2005 False Color Infra-red

2011 Natural Color

Phase 1aCultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York

Figure 14: 1994—2011 Aerial Photograph of the Project Area

Table 3: Summary of Historic Map Data, Westwood Country Club Locality

1854 Samuel Geil. First indication of roadways and there are several residences within the project area. Neither of the current major east-west roadways (Maple Road and Sheridan Drive) exist.

The roads across the southern part of the project area continue to be shown on maps and aerials up to 1938.

1866: Roads shown in 1854 remain and there are two residences present: "G. Gretsinger" and "D. Cole". The latter residence shows continuity with the 1854 listing. The "Christman" residence, north of those along the roadways is now attributed to "J. Covey".

1880: Roads in the southern part of the property are still present but there shapes have changed somewhat. One residence is still shown along the north side of the road and is attributed to "G. Gretsinger" showing continuity with the 1866 map.

A portion of the property to the north of the roadway is labeled as the "Kibler Est[ate]" and may include one or more structure symbols in the area where the "Covey" residence had been drawn.

There do not appear to be any structures in the area where the Christman/Covey residence had been shown.

1900/1901: The roads in the southern part of the property conform to the arrangement shown on the 1880 map. Only two structure symbols are present along the north side of the road and appear to be in the same locations as residences previously attributed to "G. Gretsinger" and "D. Cole"

1909/1915: The majority of the area is attributed to "G. Gretzinger"(sic). Two residential structures are shown in the general locations where these have been previously plotted. This map provides additional detail in indicating that the western structure had an associated barn or similar outbuilding on the south side of the road. The eastern structure is associated with two structures to the northwest.

1927: Aerial photos show the roadways that have been present since the late-19th century. They also show that construction of the country club has been started. Sheridan Drive, on the south edge of the project area, has been constructed or is in the process of being constructed.

A rectangular vegetation zone is evident in the northwest quarter of the property. That general area, apparently a wooded section is still evident on current maps and aerial photographs.

1948: The roadways that had been evident in the southern part of the property since 1866 are no longer represented. A newer roadway off North Forest Road accesses the country club buildings and the area is identified as the "Wilmot Country Club". The small wooded zone in the northwest is still apparent.

There is an apparent structure symbol in the southwest quarter of this map. It seems rather outsized for symbols used for residential locations. There is no structure shown on the 1951 aerial photograph in this general area. For that reason it was thought that the symbol might have been added to the particular map that was scanned. However, other digital versions of the map do show the structure symbol.

1951: The country club locale shows more clearly and does not appear to have significantly expanded beyond its 1927 limits. The 19th century roadways in the south are more clearly defined but are probably only used as private accesses with the exception of the portion on the east representing the country club entrance.

The expansion of the country club golf course to its current extent occurred prior to 1994. Aerial photographs from 1994, 2002, 2005, and 2011 (Figure 14) show the minimal changes to the area.

CULTURAL RESOURCE INVESTIGATION SUPPORTIVE DATA

Applicant Name:	Mensch Capital Partners, LLC 350 Essjay Road Williamsville, New York 14221
Project/Facility Name:	Westwood Country Club
OPRHP Project Review No	b.: 12PR4942
Project/Facility Location:	South of Maple Road, north of Sheridan Drive and immediately west of Ellicott Creek.

Reports should include the items listed below. Bracketed information is optional. Put a check mark next to each item appended.

PLEASE NOTE: Most attachments below often provide precise locational and compositional data on archaeological sites. This information is confidential to protect the resource from vandalism. All attachments with sitespecific information should be omitted from report copies which will be available to the general public.

- \square Qualifications of principal investigator(s) On file
- \square Topographic map with project area noted (Figure 2)
- Map(s) of test locations, field inspection, and areas of cultural material (Maps must have titles, legend, bar scale, and directional arrow)
- □ Site inventory forms (Mark "Confidential")
- □ Artifact catalog
- \Box Record of soil Stratigraphy in each test
- ☑ Copies of relevant, supplemental historic maps Figures 5 through 14

For report which include Site Evaluation and Delineation (Phase 2), the following items should also be included,

- □ Project map with site boundaries delineated
- □ Soil profiles
- Photographs, as appropriate, characterizing project area and documenting salient cultural features
- □ Recommendations

Supportive Data Prepared By:Robert L. Dean, Heritage Preservation & Interpretation IncDate:January 7, 2013

References and Sources

Beers, F.W.	Illustrated Historical Atlas of Erie County, New York.
1880	F.W. Beers and Company, Philadelphia.
Burr, David	Map of the County of Erie.
1839	Stone & Clark, Republishers, Ithaca, New York.
Century Map (1909	Company <i>New Century Atlas of Erie County, New York.</i> Century Map Company, Philadelphia.
Elias, Thomas	The Complete Trees of North America: Field Guide and Natural History.
1980	Book Division, Times Mirror Magazines, Inc., New York.
Erie County, N	lew York Office of the County Engineer
1927	Aerial photographs.
1951	Aerial photographs.
Geil, Samuel	<i>Map of Erie County, New York.</i>
1854	Robert Pearsall Smith, publisher, Philadelphia.
Hunt, George	Natural Regions of the United States and Canada.
1974.	Wiley & Sons, San Francisco.
Miller, Norton 1973	G. Late-glacial and Postglacial Vegetation Change in Southwestern New York. New York State Museum Bulletin 420, Albany.
New York Stat	e Office of Parks, Recreation & Historic
n.d.	Sphinx system, site inventories, National Register listings, etc.;
Parker, Arthur 1922	[•] C. <i>The Archaeological History of New York.</i> <u>New York State Museum Bulletin</u> , Nos. 235, 236, Albany
Stone & Stewa 1866	rt <i>Atlas of Erie County, New York.</i> Stone & Stewart, Philadelphia.
SUNY Buffalo n.d.	Archaeological Survey SUNY Buffalo Archaeological Survey, Department of Anthropology, SUNY Buffalo, Amherst, New York.
USDA Natural	Resources Conservation Service
n.d.	Soil Data Mart and Official Soil Descriptions

United States Geological Survey

- 1900 15' Tonawanda, NY topographic map
- 1901 15' Buffalo, NY topographic map (reprinted in 1913, 1925, 1940)
- 1948 15' Tonawanda, NY topographic map
- 1948 15' Buffalo, NY topographic map

Phase 1 B Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York

DECEMBER 30, 2013

PREPARED FOR:

Mensch Capital Partners, LLC 350 Essjay Road Williamsville, New York 14221

OPRHP 12PR4942

PREPARED BY:

Robert L. Dean and Cameron R. Dean

HERITAGE PRESERVATION & INTERPRETATION INC. P.O. BOX 277 STEAMBURG, NEW YORK 14783-0277

Table of Contents

Table of Contentsi
List of Figuresii
List of Tablesiii
List of Photographsiv
Introduction1
Considerations for Phase 1b Testing at the Westwood Country Club2
Proposed Testing Plan
Phase 1b Field Testing
Test Area 1
Test Area 217
Test Area 321
Test Area 4
Test Area 5
Test Area 6
Test Area 7
Test Area 8
Westwood Country Club, Club House and <i>Windows on the Green</i> Restaurant47
Summary and Recommendations

List of Figures

Figure 1	Distribution of All Archaeological Sites within ca. Two Miles of the Project Area
Figure 2	Distribution of Prehistoric Archaeological Sites Types in Relation to Water Sources
Figure 3	Distribution of Prehistoric Archaeological by Cultural Affiliation in Relation to Water Sources
Figure 4	Location of Proposed Test Areas for Phase 1b Investigations at the Westwood Country Club11
Figure 5	Distribution of Shovel Tests, Test Area 1
Figure 6	Distribution of Shovel Tests, Test Areas 2 and 4
Figure 7	Distribution of Shovel Tests, Test Area 3
Figure 8	Distribution of Shovel Tests, Test Area 4
Figure 9	Distribution of Shovel Tests, Test Area 5
Figure 10	Structural features located in Test Area 6. Inset is a sketch map showing approximate orientations of concrete slabs
Figure 11	Distribution of Shovel Tests, Test Area 7
Figure 12	Distribution of Shovel Tests, Test Area 7 and Locations of Archaeological Sites Recorded by the Phase 1b Survey
Figure 13	Location of Archaeological Sites Recorded by Phase 1B Survey54

List of Tables

Table	1: Prehistoric Sites by Site Type5	
Table	2: Prehistoric Sites by Cultural Affiliation5	
Table	3: Test Area 1 Shovel Test Summary1	3
Table	4: Test Area 2 Shovel Test Summary1	7
Table	5: Test Area 3 Shovel Test Summary2	2
Table	6: Test Area 4 Shovel Test Summary2	5
Table	7: Test Area 5 Shovel Test Summary2	7
Table	8: Test Area 7 Shovel Test Summary	1
Table	9: Test Area 8 Shovel Test Summary4	1
Table	10: Summary of Shovel Test Coverage	0

List of Photographs

Photograph	1:	View of southeast corner of Test Area 1	16
Photograph	2:	View of built up area along the north edge of Test Area 1	16
Photograph	3:	Iron rod located in STP 1.1. Not collected	16
Photograph	4:	Test Area 2, looking north, start of single shovel	
		test transect	19
Photograph	5:	Test Area 2, looking northeasterly.	
		Note extent of ice in background	
Photograph		Test Area 2, looking westerly at refuse disposal area	
Photograph		General view of Test Area 3, looking northerly	21
Photograph	8:	View of large concrete block and mounded soil zone	
		in background in Test Area 3	
		Detail of cover and water in portions of Test Area 3	
		Looking north, Test Area 4	
		Looking south, Test Area 4	
		View of artifacts recovered from STP 4.3, Level 1	26
Photograph 1	13:	Single chert flake recovered from supplemental shovel test	~~
			26
Photograph I	14:	Looking north from the south end of the single transect used	20
			28
Photograph I	19.	View of vicinity of Test Area 5 showing furrows that have	90
Dhotomanh 1	le.	8	28
		General view of locale of structural features in Test Area 6	29 29
· ·			29
Photograph 1	10.	General view of Test Area 7, looking easterly. Elevated tee in background	99
Dhotomoph 1	۱ <u>0</u> .	Artifacts Recovered from STP 8.1, Level 1	
		Artifacts Recovered from STP 8.2, Level 1	
		Artifacts Recovered from STP 8.2, Level 1	
		Artifacts Recovered from STP 8.4, Level 1	
		Artifacts Recovered from STP 8.4, Level 1	
		Artifacts Recovered from STP 8.4, Level 1	
		Artifacts Recovered from STP 8.16, Level 1	
		Artifacts Recovered from Supplemental Shovel Test	00
i notographi -		5m west of STP 8.16	38
Photograph 2	27:	Artifacts Recovered from STP 8.19, Level 1	
Photograph 2			
· ·		5m South of STP 8.19	40
Photograph 2	29:	Looking westerly, area of STPs 8.1, 8.2, 8.4	
		(A02902.001323 and 1326)	44
Photograph 3	30:	Looking easterly from STP 8.1 across fairway to area of	
		STP 8.3	44
Photograph 3	31:	Looking westerly towards area of STP 8.8	45
Photograph 3	32:	Looking northerly towards area of STP 8.16	45
Photograph 3	33:	Looking easterly at STP 8.19	45
		Area of Westwood Historic Site, Looking Southeast	
		Looking southwesterly, area of Westwood Historic Site	
		Detail, cellar hole area at Westwood Historic Site	46
Photograph 3	37:	View of Main Entrance of Club House/Restaurant	
-		This is the southern face of the building	48
Photograph 2	28:	View of the Club House/Restaurant Complex	
		Looking south of east	49

Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York - jv -

Introduction

A Phase 1A cultural resource investigation was conducted for the Westwood Country Club in advance of plans for future multi-use developments (Dean 2013). The current primary use of the property is recreational and the majority of its acreage is covered by an eighteen hole golf course. The Phase 1A report could not identify the specific extent to which various portions of the property had been disturbed since it was developed as a golf course. However, it did indicate that some level of Phase 1B investigation was warranted based on varying levels of sensitivity within the property and varying levels of potential for archaeological deposits to occur.

This report provides information on how a Phase 1b testing strategy was developed. It then summarizes the results of the testing program and offers recommendations on whether or not any additional archaeological investigation is required at the several loci of previous activity that were identified.

References

Dean, Robert L. 2013, January

Phase 1A Cultural Resource, Westwood Country Club Property. Town of Amherst, Erie County, New York. 12PR4942, Heritage Preservation & Interpretation Inc., Steamburg, NY. Considerations for Phase 1B Testing at the Westwood Country Club Town of Amherst, Erie County, New York

A Phase 1A investigation of the Westwood Country Club property was conducted in 2012 (Dean 2013). It was determined that a significant percentage of the property had been disturbed to construct and later improve the golf course and grounds. However, there was potential for the survival of some archaeological deposits. No previous archaeological survey had been conducted within the property but several investigations have been done in surrounding areas. These surveys had reported a variety of prehistoric and historic archaeological sites. The Phase 1A report provided a map showing the locations of archaeological resources within approximately two miles of the project area (Figure 1). These were depicted with rather large buffers—a convention used to protect the precise location of sites with the intent of preventing vandalism/looting. It is debatable whether or not this is a necessary practice. The majority of formally recorded sites have been identified by modern cultural resource investigations dating from the last fifty years. Since these sites were most often discovered during surveys done in advance of development, the bulk of those properties have been destroyed.

Archaeologists across the state, and across much broader regions, often note that one of the principal factors in the location of most prehistoric archaeological sites is their proximity to a water source. This association may relate to transportation, resource acquisition, ceremonial concerns, and other factors. A second principal attribute also cited in the positioning or selection of past habitations is the presence of relatively level land.

There are, or at least seem to be, distinct differences between the distribution of archaeological sites in differing physiographic zones. One might expect that sites on the Erie-Ontario Lake Plain would be dispersed more broadly or uniformly than those in the Allegheny Plateau. In the latter area the prime long term habitation sites are constrained by the topography. Thus, the majority of recorded sites are located on bottomlands along waterways. The size of the water course also seems to be directly related to the density of past occupations. That is, a major river valley will contain higher numbers of archaeological sites than are recorded along tributary streams. Generally just considering stream ranks across the region, as stream sizes shrink so do the number of associated sites. Across the plateau another area archaeological sensitivity occurs on the extreme uplands—hill and ridge tops. Site density is still rather low compared to values recorded on bottomland positions. The lowest sensitivity areas are the slopes intervening between valley bottoms and hilltops. The exception occurs in areas where local geology has produced bedrock outcrops and/or boulder fields where rockshelter sites may be found. Across the Lake Plain there are fewer constraints on site location based on simple topography. One might expect sites to be somewhat more uniformly distributed but would show a tendency to locate with respect to nearby water and relatively level land. It should be possible to more finely detail site distributions according to function and duration of occupation to determine if longer term settlements followed the noted conventions more so than smaller camps and special use sites. In general, however, site data is not detailed enough to conduct such analyses.

To better examine the distribution of archaeological sites near the project area the recorded sites identified in the Phase 1A investigation were plotted against water sources on the current 7.5-minute topographic maps. It was apparent after the initial outlining of waterways that some sites seemed to be well removed from streams, ponds, or older marshlands. However, closer inspection of the topographic maps and the stream plots indicated two relevant factors. First, and somewhat expected in developed urban locales, the courses of some waterways were the result of human manipulation of these drainages. In some cases the changes were small and were necessary, apparently to redirect flows away from residential and/or commercial properties. In cases where long straight runs were evident it seemed most probable that these channels were constructed to drain broad areas of poorly drained land. Historic maps and air photos that had been geo-referenced to the modern topographic maps were re-examined to determine if additional drainages could be identified. It was quickly found that additional streams/channels could be discerned. Most of these additional drainage plotted were taken from the 1948 edition of 15-minute topographic maps.

Prehistoric archaeological sites were then reviewed again against the additional hydrology data. The initial plot of sites that were directly associated with water sources accounted for a very high percentage of the total number of sites present. After the extra data was included virtually all of the recorded sites were accounted for. This is demonstrated by the plot of prehistoric sites and mapped water sources (Figures 2 and 3). The breakdown of prehistoric sites across this area by site types and cultural affiliation is provided in Tables 1 and 2.

Although these tables provide values within discrete categories they do not account for changes in the way in which archaeological sites have previously been classified. Some early archaeological surveys often categorized any small distribution of artifacts as a camp. Investigations conducted in the last thirty years or so have tried to make a distinction between a camp and a lithic scatter but there is no single definition that truly distinguishes between these site types. Combining lithic scatters and camps in this area accounts for thirty-one sites, or 58.5% of the total. If lithic workshops were included in the tally, since it can be argued that these sites are a subset of the lithic scatter category, then some 64% of the recorded sites are accounted for. The next most common site type in the area is the stray find, most often represented by single artifact finds or very small numbers of artifacts (ca. less than ten items) in a limited area. Together, camps/scatters

and stray finds account for 83% of the recorded resources. Adding in the sites for which no type has been identified brings the total to 96%.

When looking at this set of sites from the perspective of their cultural affiliation we see a much more stark picture of the data—forty-three ($\pm 83\%$) of fifty-two sites have not been identified with a specific archaeological culture. Of the remaining nine properties five were classified as Archaic. While this may be a factual identification there is also a strong possibility that the determination was based on a general pattern of classifying sites as *Archaic* as a catch-all category when the actual affiliation was uncertain.

Values for site size and detailed composition were not collected but the data suggest that the sites within this sample area are all rather limited in size and complexity. No village sites or distinct special use sites have been recorded. It would appear that the majority, if not all, of these sites are rather small activity areas that have not been associated with specific functions beyond the level of lithic reduction/processing. Whether or not functional types can be identified by use wear analysis or some other means of artifact analysis remains uncertain.

Figures 2 and 3 also show several shaded areas that are the elevated portions within and just outside the project area. These roughly correspond to the 600 feet contour line. Archaeological sites are often found on elevated positions and one might expect this to be especially the case in a locale where relief is quite limited and soil drainage is poor. Looking at the sample area there seems to be no correlation between elevated terrain and water sources. The general trend in elevation across this area is from lower lands to the north to higher ground to the south. In the north there seems to be only an association between water sources and archaeological sites. However, there are not many elevated spots evident on topographic maps. In the south, there do seem to be a few sites that occur on higher ground and not directly along waterways. However, when one considers the stream meanders in these areas then it seems probable that an earlier position of the water source was the primary reason for the sites' presence.

Table 1: Prehistoric Sites by Site Type Proposed Westwood Development				
Camp	15	28.3%		
Collection	1	1.9%		
Lithic Scatter	16	30.2%		
Lithic Workshop	3	5.7%		
Not Identified	7	13.2%		
Quarry	1	1.9%		
Stray Find	10	18.9%		

Table 2: Prehistoric Sites by Cultural Affiliation Proposed Westwood Development				
Late Woodland	1	1.9%		
Early Woodland, Meadowood	1	1.9%		
Archaic	5	9.6%		
Archaic, Brewerton	1	1.9%		
Archaic Lamoka	1	1.9%		
Unidentified	43	82.7%		

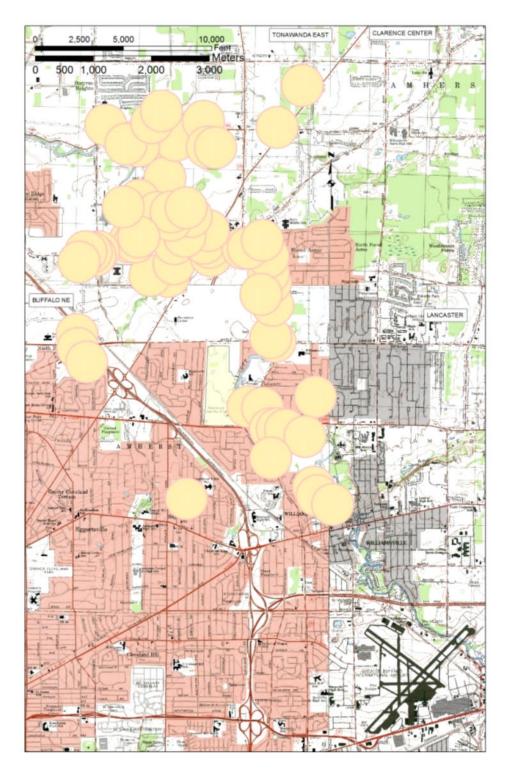


Figure 1: Distribution of all Archaeological Sites within ca. Two Miles of the Project Area Originally provided as Figure 4 in the Phase 1A report (Dean 2012)

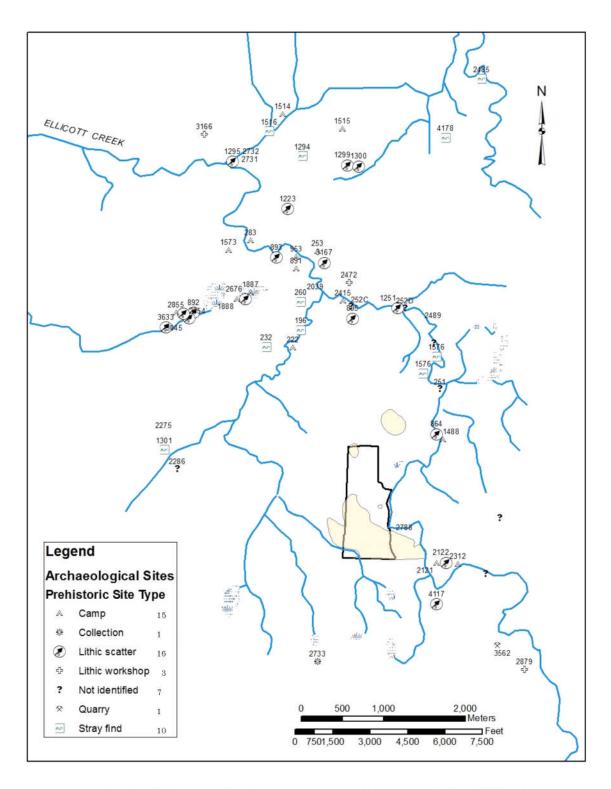


Figure 2: Distribution of Prehistoric Archaeological Site Types in Relation to Water Sources The waterways have been plotted from 15' and 7.5' topographic maps.

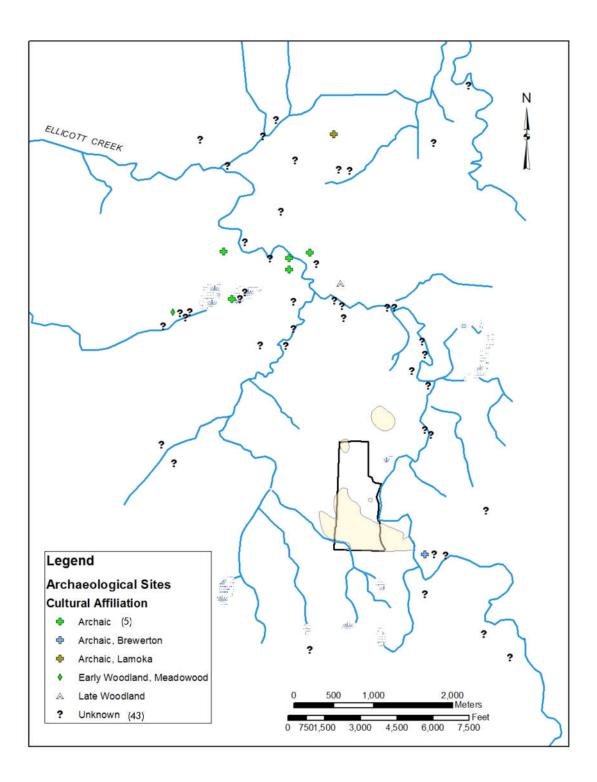


Figure 3: Distribution of Prehistoric Archaeological Sites by Cultural Affiliation in Relation to Water Sources

Proposed Testing Plan

Field testing for archaeological deposits on this property must consider several factors. First is the general level of disturbance across the proposed development. Second, is the distribution of the recorded archaeological sites nearby. The only assumption made here is that virtually all of the proposed development has been subject to some level of prior disturbance through landscaping done during the construction and improvements to the golf course. Certainly, varying levels of disturbance occurred in different areas but there is insufficient documentation available to pinpoint separate locations and equate those with specific types and intensities of past terrain modifications.

Because of the nature of the test areas within both a disturbed locale and an active golf course, field methodology may vary from state standards. Specifically, if prior disturbance is obvious and considered severe then shovel tests will not be excavated. Similarly, testing will not be done in any areas where it seems likely that the excavation will pose a safety hazard to the course users. Testing will be opportunistic and will be done in locations that appear minimally disturbed. Some locations may be examined by auger tests simply to see whether any unusual soil profiles can be discerned. When shovel tests are excavated they will be at least 40cm on a side and the soil removed will be sifted through ¼-inch mesh hardware cloth screens in an attempt to recover any artifacts that might be present. An effort will be made to preserve sod levels and to replace and plug(s) in manner that will permit quick re-establishment of the cover at these small test locations.

After reviewing the proposed development plan, site distribution maps, and the several historic and modern air photos of the existing golf course, eight areas have been selected for field inspection and testing. The most sensitive location within the property—adjoining Ellicott Creek along its eastern edge—is to remain undeveloped. Thus, all remaining portions of the property are considered of lesser sensitivity though not completely devoid of potential. The several test areas proposed were selected to provide broad spatial coverage and to examine varied zones of differing elevation, original soil drainage, proximity to water, and, ideally, lesser degrees of disturbance.

Area 1 is a small wooded stand that may have been minimally disturbed since the golf course was developed. A roughly rectangular wooded zone has been present here, although possibly a bit further north, since the 1920's. Whether this is due to the location not being suited for development due to drainage issues or other factors is unknown but should be easily evaluated.

Area 2 is narrow section along the proposed main access road which traverses an area that may have avoided some of the more intensive disturbance to which the majority of this location was subjected.

Area 3 is in the northwest corner of the property and lies on elevated terrain at the 600 feet contour. As has been noted, although there is no direct correlation between nearby sites and any elevated positions that does not exclude such spots from prior occupation/utilization.

Area 4 is another potentially more lightly disturbed zone in the southwestern portion of the property. It is on elevated terrain above the 600 feet contour.

Area 5 is a section along the southern part of the proposed main access road and on or above the 600 feet contour.

Area 6 is a very small area in the southeastern part of the property and represents the location of a cul-de-sac at the end of a proposed primary access. It is at the 600 feet contour and also near an apparent former stream channel/meander.

Area 7 is within a the southern portion of the proposed main access in what appears to be an island of green space.

Area 8 is a narrow and irregular zone along what appears to be a former stream channel/ meander and which could be the most sensitive area of the project area.

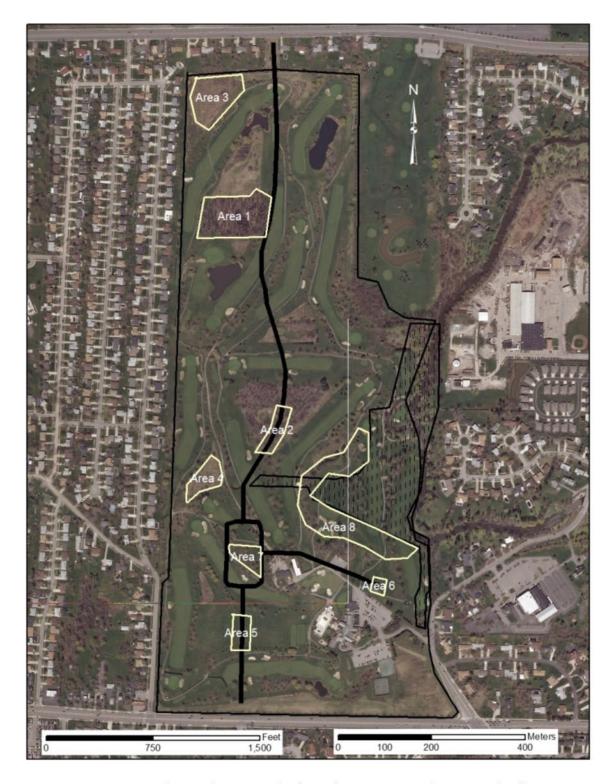


Figure 4: Location of Proposed Test Areas for Phase 1b Investigations at the Westwood Golf Course Town of Amherst, Erie County, New York The hatched area is a ca. 21 acre portion that is not to be developed. Bold black lines indicate the location of proposed primary access roads.

Figure 5: Distribution of Shovel Tests, Test Area 1 Westwood Country Club, Amherst, New York

Phase 1b Field Testing

Field investigations at the Westwood property were begun on November 20 and continued until December 5 when it was necessary to halt fieldwork during a prolonged period of winter weather. By that time the majority of the areas proposed for testing had been examined. Field work was restarted on December 18 and was primarily directed towards excavating supplemental tests at the several places where prehistoric and early historic artifacts had been recovered.

The results of testing at each of the designated areas are summarized in the following. In general, shovel tests averaged 40cm on a side and were excavated into a subsoil level or to a point where it was evident that the location was disturbed or conditions prevented deeper manual excavation (water, dense or large stones). Soil removed from each shovel test was sifted through onequarter inch mesh hardware cloth screens in an effort to recover any artifacts present. Soil was sifted onto a poly tarp to assist in backfilling. Data recorded for each test included the number of soil levels observed. Notes kept for each soil level included: depths below surface, soil color, soil texture, gravel/stone content, moisture level, opinions on disturbance, and the presence/absence of artifacts.

Test Area 1

This test area was selected since it appeared to be one of, or possibly the only, area that appeared relatively undisturbed since the golf course was developed in the early twentieth century. It was a wooded plot whose location seemed to have shifted only slightly south from its earlier position.

Testing across this area was done along a series of parallel transects oriented north-south. Shovel tests were excavated at 15m intervals along each transect. As was the case elsewhere on this project the soil drainage was an issue. Much of the area was wet and most depressions or other low spots contained pooled water. There was a light scatter of modern debris across this area and the lands adjacent on the north were very noticeably built up.

Twenty-eight shovel tests were excavated to cover this area. Seven tests were positive for modern artifacts, one of which was a piece of sawn refuse bone. What appeared to be a chert flake was recovered from one test (1.4) but, after cleaning, was not classifiable as a waste flake.

No supplemental testing was done in this area and no further investigation is recommended there.

Table 3: Test Area 1 Shovel Test Summary

Test 1.1	Level 1 2	Depths (cm) 0 - 18 18 - 33	Soil Description silt, only small roots; 10YR 3/2 compact silt clay or silt, tree roots; OGM	Artifacts bent iron piece
1.2	$\frac{1}{2}$	0 - 19 19 - 33	silt, small roots get larger w/depth; 10YR 3/2-3/3 compact, somewhat blocky silt clay, small roots; OGM	
1.3	$\begin{array}{c} 1\\ 2\\ 3\end{array}$	$\begin{array}{rrrr} 0 & - & 12 \\ 12 & - & 22 \\ 22 & - & 37 \end{array}$	sandy silt, small roots; 10YR 3/2 silty; mix of grays & some L1 compact silt clay, roots; bright OGM	···· ···
1.4	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	0 - 14 14 - 28 28 - 42	compact lightly sandy silt, small roots; 10YR 2/1-2/2 lightly sandy silt; mixed 10YR 3/3-4/3 & pale gray silt clay; OGM	chert?
1.5	1	0 · 16	silt, some sand, small roots; 10YR 3/3 $$	brown bottle glass
	$\frac{2}{3}$	16 - 28 28 - 38	silt?, one large root; mixed brown & dark OGM loamy; OGM	
1.6	$\frac{1}{2}$	0 - 13 13 - 26	lightly sandy silt; 10YR 3/3 compact sticky silt clay; bright OGM, darker w/depth	
1.7	1	0 - 15	sandy silt, dense roots; 10YR 3/2-3/3	plastic redware
	2	15 · 35	clay silt, dense roots; OGM	
1.8	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	0 - 17 17 - 30 30 - 44	'loose' silt w/wood chips or mulch; 10YR 3/2 silty root churned zone, mixed soils rooty silty fine sand; OGM	· · · · · · ·
1.9	1	0 - 31	lightly sandy silt, small roots, large one at 24cm, soils gets sticky w/depth; 10YR 3/1-3/2	
	2	31 - 41	copact somewhat blocky silt clay; OGM	
1.10	1	0 - 29	'loose' & silty, deep fine root mat; 10 YR 3/2	bottle glass brn & clr
	2	29 - 42	compact sandy clay; OGM (bright orange)	
1.11	$\frac{1}{2}$	0 - 28 28 - 45	loose' silt, fine roots & a few larger; 10YR 3/2 compact silt clay; OGM	
1.12	$\frac{1}{2}$	$0 - 35 \\ 35 - 49$	sandy silt, fine & small roots; 10YR 3/2-3/3 silt clay w/pockets of sand; OGM	wrapper plastic
1.13	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	0 - 19 19 - 30 30 - 44	sandy silt, fine roots; 10YR 3/2 mottled sandy silt; gray and dark gray compact silty sand; pale OGM	···· ···
1.14	1	0 - 25	silt, some clay content, sticky, fine and small roots; 10YR 3/2-3/1 sticky silve clay w/wasts; OCM	wrapper plastic
~	2	25 - 39	sticky silty clay w/roots; OGM	
1.15	$\frac{1}{2}$	0 - 26 26 - 41	silt/wood/roots; 10YR 3/1-3/2 stiff clay, grays w/some orange	
	3	41 - 47	stiff clay; orange brown	

Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York - 14 -

Test	Level	Depths (cm)	Soil Description	Artifacts
1.16	$\frac{1}{2}$	$0 - 12 \\ 12 - 27$	'loose', silty, fine roots, wood pieces, sticky & wet; black wet/muddy silt, water at 20cm; dark gray	refuse bone, sawn
1.17	1 2	0 - 14 14 - 38	sticky silt clay, small roots; 10YR 3/2 heavy, sticky clay, some roots; OGM	
1.18	pot ho	le zone, water poo	led; no test	
1.19	$\frac{1}{2}$	0 - 26 26 - 39	silt, some sandy spots, fine roots; 10YR 3/3 stiff silty clay; OGM	
1.20	$\frac{1}{2}$	$0 \cdot 11 \\ 11 \cdot 28$	silt & fine roots; very dark gray brown to black sticky, heavy clay; OGM	
1.21	$\frac{1}{2}$	$0 - 31 \\ 31 - 45$	sticky silt, large roots; very dark gray brown to black dense clay; OGM	
1.22	$\frac{1}{2}$	$0 - 31 \\ 31 - 42$	clay silt, fine roots & larger; very dark gray brown silty clay, small roots; OGM	
1.23	$\frac{1}{2}$	0 - 20 20 - 36	sticky sandy clay silt w/assorted roots; dark gray stiff silt clay; pale OGM	
1.24	$\frac{1}{2}$	$0 - 31 \\ 31 - 41$	very lightly sandy silt, damp to wet, fine roots; dark gray stiff heavy clay; OGM	,
1.25	$\frac{1}{2}$	0 - 25 25 - 41	heavy wet silty clay w/roots, dense at base; gray wet, silty clay w/roots; OGM seepage in this level	
1.26	1	0 - 36	very loose, wet, sticky mulch or chopped leaves in clay; dark gray, many roots	
	2	36 · 46	stiff dense clay; OGM	
1.27	1	0 - 22	leaf litter, sticks, plastic bits, very loose and very little actual soil; very dark gray brown to black	
	2	22 · 41	very compact clay; OGM	
1.28	$\frac{1}{2}$	0 - 24 24 - 36	rather loose clay silt, fine & large roots; dark gray dense clay; OGM	
1.29	$\frac{1}{2}$	0 - 25 25 - 35	wet clay silt, small roots; dark gray clay or silty clay, stiff & heavy; OGM	

Photograph 1

View of southeast corner of Test Area 1

Photograph 2

View of built up area along the north edge of Test Area 1

Photograph 3

Iron rod located in STP 1.1

Not collected

Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York - 16 -

This area was selected based primarily on the possibility that it had been less disturbed than other locales. Much of this test area was wooded with varying density of understory. It had originally been intended to cover the area by excavating a series of shovel tests along parallel north -south transects. However, after completing the initial line of tests it was determined that the area consisted of sections that were very poorly drained and/or were significantly disturbed. The single test transect consisted of only seven shovel tests (Table 4) and none produced anything other than modern materials.

Test 2.1	Level 1	Depths (cm) 0 - 17	Soil Description sandy mud w/dense grass roots, water pooled at 17cm; brown	Artifacts
2.2	1	0 - 26	wet to muddy clay silt, sticky, small roots; brown	golf ball
	2	26 - 38	stiff, wet silt clay; light orange brown	tar
2.3	$\frac{1}{2}$	0 - 17 17 - 27	wet/muddy, 1 piece crushed stone; brown more mud, water pooled at 21cm; lighter brown or yellow brown	
2.4	1	0 - 30	wet sticky silt or clay silt, muddy in spots, wetter with	
	2	30 - 41	increased depth; dark brown wet to muddy silt clay; orange brown	
2.5	1	0 - 26	very wet & sticky silt or silt clay, dense small roots &	
	2	26 - 41	some larger tree roots; brown heavy wet silty clay, wet; dark orange brown	
2.6	no tes	t, path/trail and a	a dump zone on west	
2.7	no tes	t, all disturbed		

Table 4: Test Area 2 Shovel Test Summary

Figure 6: Distribution of Shovel Tests, Test Areas 2 and 4 Westwood Country Club, Amherst, New York

Photograph 4: Test Area 2, looking north, start of single shovel test transect.

Photograph 5:

Area 2 Looking northeasterly, note extent of ice in background

Photograph 6:


Area 2 Looking westerly at refuse disposal area

Figure 7: Distribution of Shovel Tests, Test Area 3 Westwood Country Club, Amherst, New York

This test area, in the northwest corner of the property, had been selected on the basis of its position on elevated terrain at the 600 feet contour. The cover was a mix of young trees, saplings, shrubs and assorted low plants. The entire test area was quite wet and standing water was evident in most locations. Fourteen shovel tests were excavated along a series of north-south transects and none produced either prehistoric or historic materials (Table 5). In addition to the drainage issue there were also indications of prior disturbance in the form of mounded soil and one large block of concrete.

Photograph 7:

General view of Test Area 3 Looking northerly

Photograph 8:

View of large concrete block and mounded soil zone in background in Test Area 3

Photograph 9:

Detail of cover and water in portions of Test Area 3

Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York - 21 -

Table 5: Test Area 3 Shovel Test Summary

Test 3.1	Level soil cap	Depths (cm) removed and wa	Soil Description as entirely brown mud, pooled water at 20cm; abandoned	Artifacts
3.2	$\frac{1}{2}$	0 - 16 16 - 33	wet silt, grass roots, brown heavy wet silty clay; OGM & brown	
3.3	$\frac{1}{2}$	$\begin{array}{c} 0 & \cdot & 14 \\ 14 & \cdot & 33 \end{array}$	wet silt clay?, deep & dense grass roots, gray brown clay, wet, tough; brown	···· ···
3.4	$\frac{1}{2}$	0 - 15 15 - 28	wet silt clay, dense grass roots; brown wet, heavy, dense clay; OGM	···· ···
3.5	1	0 - 19	silt clay, dense roots, 1 stone; brown with some blobs of orange brown	
	2	19 - 35	wet dense silty clay; very orange but becomes a more usual OGM with depth	
3.6	$\frac{1}{2}$	0 - 20 20 - ?	wet & muddy silt clay, dense roots; brown dense clay, water at 24cm; brown?	· · · · · · ·
3.7	$\frac{1}{2}$	$0 \cdot 15 \\ 15 \cdot 30$	wet to muddy silt clay, dense grass roots; brown dense clay; brown, gray & reddish brown	···· ···
3.8	$\frac{1}{2}$	$0 - 15 \\ 15 - 30$	wet clay, grass and shrub roots; brown dense clay; brown & reddish brown	···· ···
3.9	$\frac{1}{2}$	0 - 27 25+	stiff clay w/dense roots; brown roots end ca. 25cm but soil does not improve, abandoned	 I
3.10	$\frac{1}{2}$	$\begin{array}{r} 0 & \cdot & 16 \\ 16 & \cdot & 31 \end{array}$	silt clay, roots; brown dense heavy clay; dark OGM w/brown	···· ···
3.11	$\frac{1}{2}$	0 - 18 18 - 32	wet to muddy silt clay, heavy & dense, dense roots; brow wet clay, dense, some water; OGM	vn
3.12	water	pooled and mud	ldy zone, no test	
3.13	1	0 - 16	wet to muddy silt clay or clay, dense grass roots; brown and some reddish brown	
	2	16 - 28	wet dense clay; OGM	
3.14	$\frac{1}{2}$	0 - 11 11 - 30	silty, moss roots, wet; brown compact, lightly silty sand, water at 30cm; light brown	···· ···
3.15	$\frac{1}{2}$	0 - 20 20 - 35	wet to muddy clay, dense grass & shrub roots; brown dense clay, dense shrub and sapling roots, some water but seepage is slow after it is bailed out; brown	
3.16	water	pooled here is 1	0+cm deep, no test	
3.17	$\frac{1}{2}$	$ \begin{array}{r} 0 & - & 21 \\ 21 & - & 35 \end{array} $	silt clay, dense grass & shrub roots; brown silt clay, not dense; OGM (mostly orange)	
3.18	$\frac{1}{2}$	0 - 22 22 - 32	wet to muddy silty clay, grass roots; brown water at 22, silt clay; OGM & reddish brown; slow seeps	
3.19	_	wet zone with po		

This test area was selected since it seemed to have some potential as a lightly disturbed zone and it was located within the 600 feet contour. The area was a grassy, weedy zone with a few mature trees and some scattered saplings or shrubs. Thirteen shovel tests were excavated on a series of north-south transects (Table 6). One test (4.3) produced five chert flakes, a chunky piece of chert and a fragment of clear bottle glass. Five supplemental tests were excavated around this test: one produced an additional chert flake and two contained modern materials.

All of this area had been noted to be quite poorly drained and standing water became more pronounced as one moved westerly. Several shovel tests produced fragments of what appeared to be ceramic (redware) drainage tile. This assumption was confirmed when intact segments of tile were encountered. Because of the disturbance and the low frequency of artifacts this location was not designated as a new archaeological site.

Photograph 10: Looking north, Area 4

Photograph 11:

Looking south, Area 4

Figure 8: Distribution of Shovel Tests, Test Area 4 Westwood Country Club

Table 6: Area 4 Shovel Test Summary

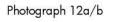

Test	Level	Depths (cm)	Soil Description	Artifacts
4.1	1	0 - 41	wet to muddy silt clay and water, dense grass roots, water pools throughout; dark gray brown	
	2	41 - 51	dense clay and water pools; OGM	
4.2	$\frac{1}{2}$	0 - 35 35 - 51	sticky silt clay, dense grass roots; brown stiff, heavy silty clay or clay; OGM	whiteware
4.3	1	0 - 38	wet silt clay, dense grass roots, some gravel	5 chert flakes 1 chert chunk
	2	38 - 58	stiff, heavy clay; OGM becomes mostly gray at base	bottle glass
Suppleme 5m North	ntal Tests 1	at STP 4.3 0 - 30	30-36cm of snow cover silt clay w/small roots, not frozen but a bit stiff, some light gravel; dark brown	cherty piece
	2	30+	clay, very stiff; OGM with blobs of reddish brown	
5m East	1	0 - 42	stiff silt clay, small roots & some larger; dark brown	coal n.c. tiny clear glass
	2	42+	silty clay; OGM	••••
5m South	1	0 - 42	stiff and rooty silt clay, single stone and some gravel; dark brown	chert flake clear plastic
	2	42+	stiff silty clay; OGM	
10m South	n 1 2	0 - 30 30+	silt clay, many small roots, quite stiff; dark brown stiff silty clay; OGM	
5m West	$\frac{1}{2}$	0 - 32 32+	silt clay, heavy, very rooty, would be wet if not so cold; silty clay; dark OGM	
4.4	1	0 - 33	wet to muddy silt clay, dense grass roots, 1 tree root; brown	
	2	33 - 45	stiff clay or silty clay; reddish brown	
4.5	$\frac{1}{2}$	$0 - 34 \\ 34 - 45$	wet silt clay, dense grass roots; dark brown stiff clay; brown to orange brown; slow seepage	coal cinder
4.6	1	0 - 33	muddy, sticky silt clay, dense grass roots, steady	redware
	2	33 - 46	seepage; gray brown stiff clay; OGM	
4.7	$\frac{1}{2}$	$0 - 35 \\ 35 - 49$	wet to muddy silt clay, dense grass roots; dark brown silty clay, very light seepage; OGM	
4.8	$\frac{1}{2}$	0 · 31 31 · 47	wet to muddy silty clay, dense grass roots, seepage clay w/some gravel, redware fragments continue; more mottled with depth, also some larger stones and more gravel; some red brown and some OGM	redware tile redware tile
4.9	$\frac{1}{2}$	0 - 48 48 - 64	mud w/dense grass roots, seepage, a few cobbles, silt cla silty, somewhat compact, water filling test but all seem to be from Level 1; dark orange brown	

Table 6-continued

Test	Level	Depths (cm)	Soil Description	Artifacts
4.10	1	0 - 40	wet silty clay, a few cobbles, water pooling at 40cm whe redware drain tile trending NW/SE; abandon	re hit a
4.11	$\frac{1}{2}$	$0 - 37 \\ 37 - 54$	muddy silt clay, dense grass roots, seepage throughout compact silt clay, seepage seems to be from below; orange brown	
4.12	1 2	$0 \cdot 34$ $34 \cdot 48$	sticky silt clay, dense grass roots & small sapling roots; heavier & denser with depth; dark brown dense clay; brown, lighter than level 1 and not distinct in profile	
4.13	12	$\begin{array}{r} 0 & \cdot & 36 \\ 36 & \cdot & 51 \end{array}$	wet to muddy silt clay, dense grass roots, cobble, water fills test as being dug; brown dense clay, wet, water fills; lighter brown	

Views of artifacts recovered from STP 4.3, Level 1

chert flakes and a fragment of clear bottle glass

Photograph 13a/b

Single chert flake recovered from supplemental shovel test 5m South of STP 4.3, Level 1

This area was selected primarily because it was on the 600 feet contour. It is the proposed location of a major access road. Field inspection found the location to be less than expected and there were no indications of its occupying an elevated position. One prominent elevated feature was present but it was an artificial construct. The area was tested during a warming period and the melting snow highlighted regularly spaced furrows across the landscape which appeared most likely related to providing better drainage.

A single line of shovel tests was excavated across this area and none were productive of either prehistoric or historic cultural material.

Table 7: Test Area 5 Shovel Test Summary

Test 5.1	Level 1 2	Depths (cm) 0 - 26 26 - 37	Soil Description sticky silt clay, dense grass roots; brown clay, no seepage but surface wet and water pooled; red brown or reddish brown	Artifacts
5.2	$\frac{1}{2}$	0 - 27 27 - 40	sticky, compact clay silt; brown lightly sandy silt, rapid seepage at base; OGM	
5.3	$\frac{1}{2}$	0 - 15 15 - 60	dense silty clay, grass roots, citronella ants; brown clay and silt clay, mixed in a manner that seems to to confirm this is an artificial construct	
5.4	$rac{1}{2}$	0 - 27 27 - 47	compact sticky clay silt; light brown stiff silt clay, light seepage; pale OGM	
5.5	$\frac{1}{2}$	0 - 23 23 - 36	wet, compact, sticky clay silt mix; brown dense clay; reddish brown	

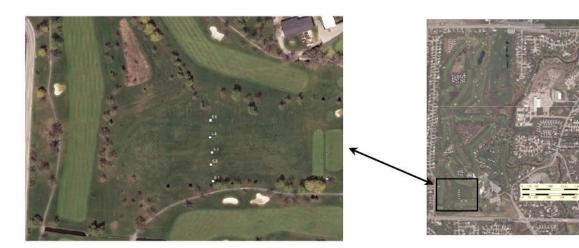


Figure 9: Distribution of Shovel Tests, Test Area 5 Westwood Country Club, Amherst, New York

Photograph 14: Looking north from the south end of the single transect used to test across Area 5

Photograph 15: View of vicinity of Test Area 5 showing furrows that have been identified as drainage enhancement features.

This area was selected because it was located on the 600 feet contour and it was near an apparent former stream channel. Field inspection determined that the earlier assumption of the area's proximity to a waterway was erroneous. Additionally, the area had been subject to previous disturbance from existing golf course features and a former structural component. The structural features consisted of several concrete slabs as shown in Figure 10 and appear to be the supports for a former water tower noted on topographic maps.

No shovel testing was conducted in this Test Area.

Photograph 16:

General view of locale of structural features in Test Area 6. Peripheral slab in foreground (ca. 70cm x 70cm). Apparent remnants of a former water tower.

Photograph 17:

View of central slabs, structural feature. Test Area 6

Figure 10: Structural features located in Test Area 6.

Inset is a sketch map showing approximate orientation of concrete slabs. These represent supports for a former water tower.

This area was selected as it was thought to have been a relatively undisturbed locale. That assumption was in error and probably the result of poor map/aerial photograph interpretation. The area was located immediately adjacent, and northwest of, the golf course's maintenance buildings. A part had been previously disturbed by the construction of an elevated tee. Shovel tests were excavated to the west of the tee to expose soil profiles and compare them to the other test areas. Eight of a possible ten tests were excavated along three test transects. The two tests not dug were skipped due to standing water. All of the soils were wet and none produced any prehistoric artifacts. Modern material was noted in two tests.

Table 8: Area 7 Shovel Test Summary

Test 7.1	Level 1	Depths (cm) 0 - 27	Soil Description damp to wet sticky clay loam, some angular stones; dark brown	Artifacts
	2	27 - 39	dense clay, seepage from base; light brown	
7.2	$\frac{1}{2}$	0 - 33 33 - 46	sticky silty clay, wet, a few stones; dark brown clay, one cobble; brown	
7.3	$\frac{1}{2}$	0 - 26 26 - 37	wet silt clay, a few tree roots; dark brown clay, some roots, seepage only evident in L1; brown	clinker/slag.
7.4	water:	zone		
7.5	$\frac{1}{2}$	0 - 35 35 - 52	wet to muddy silt clay, many roots; dark brown wet sandy (coarse grit) silt clay, seepage throughout; reddish brown	
7.6	$\frac{1}{2}$	$0 - 30 \\ 30 - 44$	clay silt mix, small roots, not wet; dark brown silt clay, heavy & dense, light seepage from base; lighter brown than Level 1	
7.7	$\frac{1}{2}$	0 - 28 28 - 41	silty, many small roots 10YR 3/3 dense clay, very tough to dig; brown	
7.8	$\frac{1}{2}$	0 - 28 28 - 43	wet then compact silt, grass roots; dark brown dense clay; brown	
7.9	no test, v	vater		
7.10	1	0 - 25	wet but solid silt clay, shale or slate fragment	PVC fragment
	2	25 - 38	dense clay, hard to dig; brown	clear glass

Photograph 18:

General view of Test Area 7, looking easterly. Elevated tee in background. Single test transect ran north to south (left to right in photograph).

Figure 11: Distribution of Shovel Tests, Test Area 7 Westwood Country Club, Amherst, New York

This area was selected because it was along an extinct meander of Ellicott Creek. This alone made it the single most archaeologically sensitive area within the project. Shovel testing along this section of the project was begun on the southern and/or western side of the former creek channel. Tests were placed at 15m intervals where possible but none were located on any of the golf courses active features (tees, greens, fairways). In general, the southern/western side of the old channel appeared to be ideally suited for past occupations. It was significantly elevated form the former waterway and these adjoining lands were relatively level. Many areas would have been suitable for a broad range of site types from fishing/hunting camps to larger and longer term settlement.

Twenty-four shovel tests were initially excavated in this Test Area (Table 9), eighteen on the southern and/or western side of the old creek channel and six on its lower, opposite bank. Six shovel tests contained prehistoric artifacts in the form of chert debitage (flakes and shatter). One of those also contained an assortment of historic artifacts that have been assumed to be associated with an historic structure foundation and walkway. Five of the positive tests were located on the southern/western side of the creek channel and one was on the opposite bank.

The most extensive area of prehistoric activity was identified in the southeast portion of Test Area 8. Initial testing to the west of a fairway (STP 8.1 and 8.2) produced multiple pieces of chert debitage. A test excavated east of the noted fairway and west of a small utility building (STP 8.3) also produced multiple pieces of chert debitage as well as a few historic/modern items. It has been assumed for now that this distribution of positive tests is indicative of a larger occupation zone which will require additional testing and would be best investigated through a Phase 2 level study. The location has been recorded as the Westwood 1 Pre-Contact site (OPRHP Site number A02902.001323).

Shovel test 8.4, which was located 15m west of STP 8.1, also contained a single chert flake but was primarily the location of an assortment of historic artifacts that included ceramics, refuse bone, metal, and glass. The flake may represent a western extension of the Westwood 1 site which overlaps this historic component. The scatter of historic material very probably represents a midden deposit that should extend down the former creek bank. The materials are considered to be associated with an historic foundation located to the southwest of STP 8.4. The foundation, which is quite visible, was oriented east-northeast/west-southwest and measured ca. 7m wide by ca. 15m long with an apparent cellar hole on its eastern side. A L-shaped walkway consisting of nine concrete slabs is also present on the east. This location also requires additional testing and is another location that would best be investigated through a Phase 2 level study. It has been recorded as the Westwood Historic site (OPRHP Site number A02902.001326.

Shovel test 8.8, excavated in the area of a cluster of trees with very 'knobby' trunks. The test produced a single chert flake. Four supplemental tests were excavated around this find spot—one each in the cardinal directions and five meters from the original shovel test. None of those tests produced any additional prehistoric artifacts but several did show previous disturbance in the form of mixed soil levels and cinder deposits. No site number was assigned to this location and no additional investigation has been recommended.

Shovel test 8.16 was positive for a small chert flake fragment and a small fragment of redware. The test was located on a spot that was significantly elevated above the former stream channel. It was also north of an easterly trending broad cut through the old stream bank. That feature may represent a former tributary drainage that was widened by the golf course. Some landscaping seemed likely in the find area as the depth of Level 1 soil was less than had been observed elsewhere. This locale also had the appearance of having been leveled. Four supplemental shovel tests were excavated around this find spot. Those done to the east and north were each 5m from the original test and were negative. One test located 5m to the west contained a another small chert flake. A test placed 10m to the west was negative. All of the supplemental tests in this area had shallow Level 1 soils compared to other locations. The location has been assigned a formal site number (OPRHP A02902.00324) and has been identified as the Westwood 2 Pre-Contact site. Because of the limited quantity of artifacts recovered and the apparent landscaping done here, no additional study is recommended.

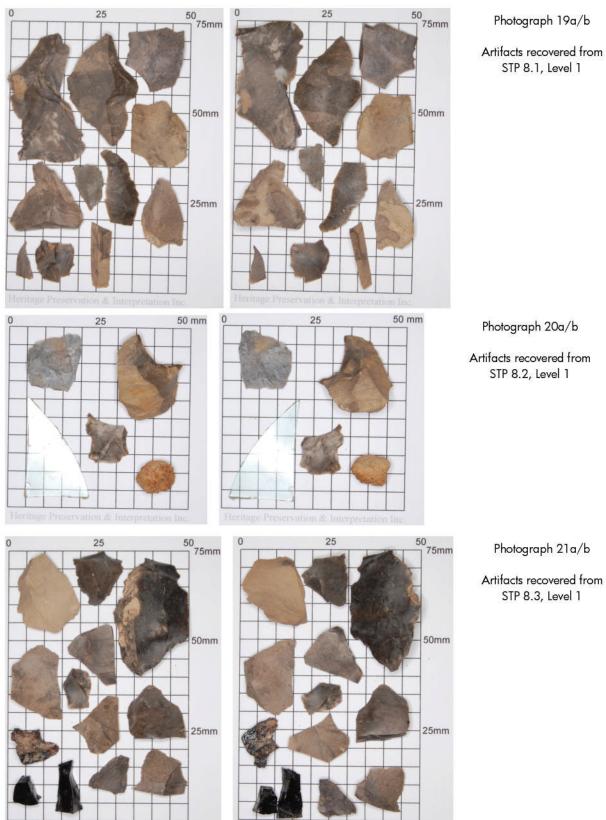
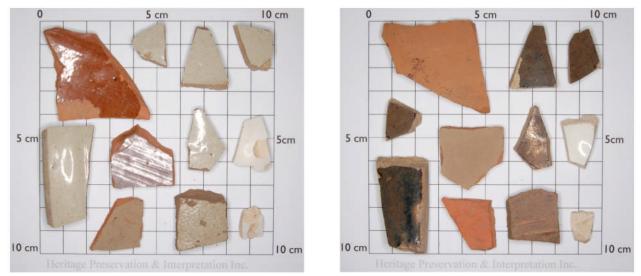
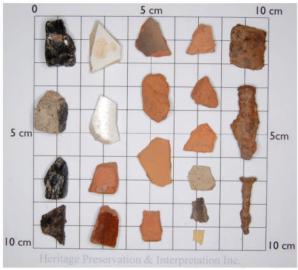
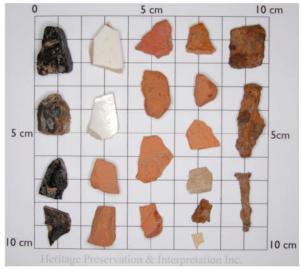

Shovel test 8.19 was the first test excavated on the lower, eastern or northern side of the former creek channel and it was positive for chert debitage (7 flakes, 1 shatter) in Level 1. The test was located to the west of a fairway and atop the former low creek bank. Four supplemental tests were excavated around this find spot, one each in the cardinal directions and 5m distant. Two of these supplemental tests were positive for additional prehistoric material. The test to the west produced fifteen chert flakes and the test to the south had a single chert flake. This location has been identified as the Westwood 3 Pre-Contact site (OPRHP Site number A02902.001325). The site is in an area on the margin of proposed future developments. If the site is found to be within a zone that will be disturbed then Phase 2 level study is recommended. If the site is outside a zone scheduled for immediate development then the area should be identified on base maps and avoided by any future construction.

Figure 12:


Distribution of Shovel Tests, Test Area 7 and Locations of Archaeological Sites Recorded by the Phase 1b Survey




Heritage Preservation & Interpret

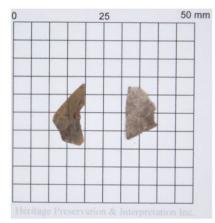
Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York - 36 -



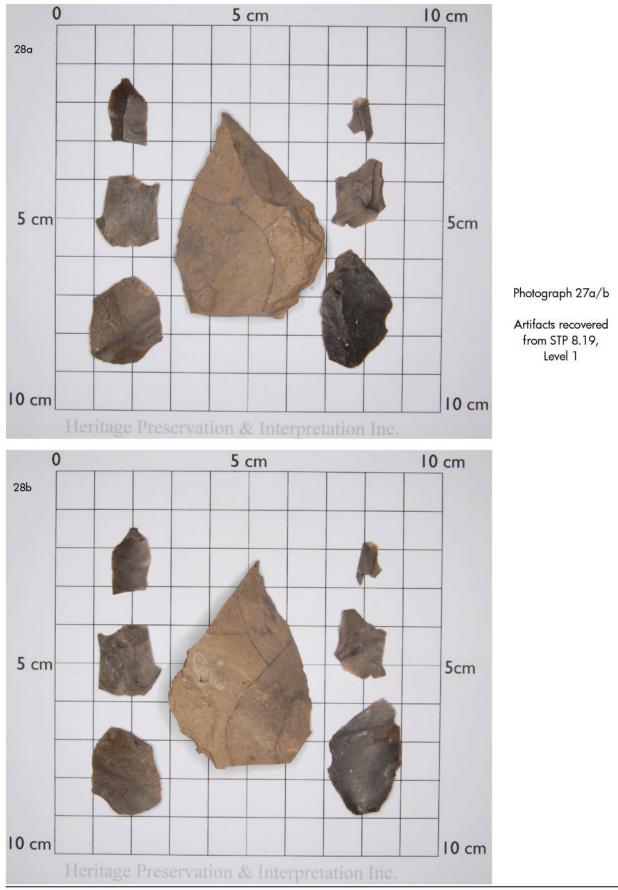
Photograph 22a/b: Artifacts from STP 8.4, Level 1

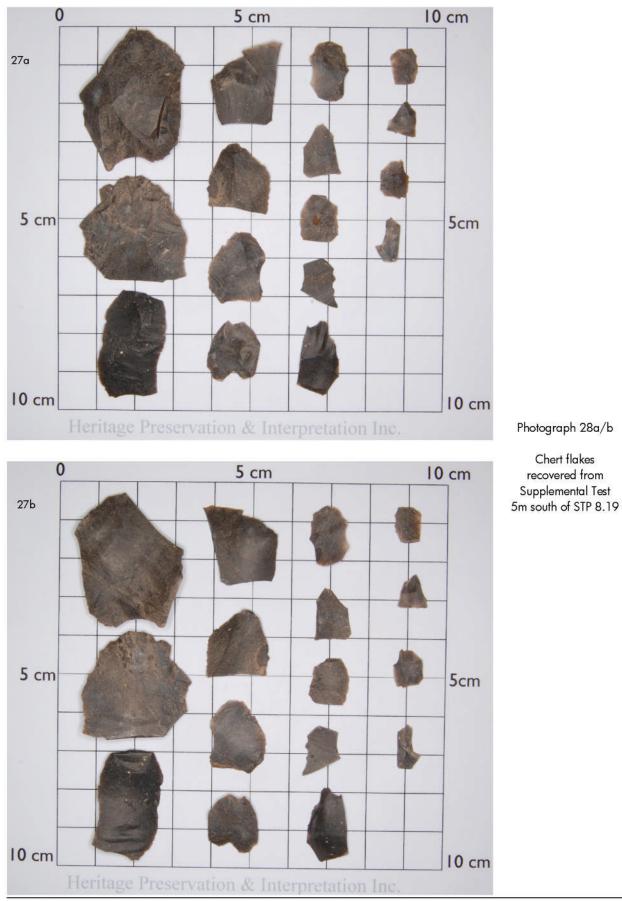
Photograph 23a/b: Artifacts from STP 8.4, Level 1

Photograph 24a/b: Artifacts from STP 8.4, Level 1



Photograph 25 a/b


Chert flakes recovered from STP 8.16. Level 1



Photograph 26 a/b

Chert flakes recovered from Supplemental Shovel Test 5m West of STP 8.16

Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York - 39 -

Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York

Table 9: Area 8 Shovel Test Summary

Test 8.1	Level	Depths (cm) 0 - 28 28 - 42	Soil Description sandy silt loam, some tree roots; 10YR 4/3 silt clay; deep brown	Artifacts 11 chert flakes
8.2	1	0 - 27	silt loam, quite dry; 10YR 4/3	2 chert flakes 1 chert shatter 1 glass
	2	27 - 42	silt clay mix; reddish brown	
8.3	1	0 - 30	compact clay silt, grass roots; 10YR 3/3	8 chert flakes 2 chert chunks coal cinder
	2	30 - 38	dense clay; reddish brown	2 chert flakes tiny
8.4	1	0 - 25	silt loam, grass roots; 10YR 3/3	stoneware redware bottle glass refuse bone metal/nail 1 chert flake
	2	25 - 36	dense clay; OGM and reddish brown	
8.5	1	0 - 21	sticky damp silt; 10YR 3/3	whiteware wire 'clam' shell
	2	21 · 34	dense clay; OGM and reddish brown	
8.6	$\begin{array}{c} 1\\ 2\\ 3\end{array}$	0 - 21 21 - 27 27 - 40	cinder zone; black ash/cinder zone, some large stones; gray very lightly sandy silt clay; OGM	nails
8.7	1	0 - 18	compact silt or silt clay, sandy spots; 10YR 4/2 $$	clear glass coal
	2	18 - 33	dense silty clay; OGM	
8.8	$\begin{array}{c} 1\\ 2\\ 3\end{array}$	0 - 30 30 - 50 50 - 58	sandy silt loam; 10YR 4/3 silty sand; light brown w/some orange brown clay; OGM	chert flake?
Supplem 5m Nortl	ental Test h 1	s at 8.8 0 - 28	variable snow cover to 30cm silt loam, small roots, a few cobbles; rich dark brown (top 6-7cm frozen)	
	2	28 - 47	lightly silty sand; mixed dark gray, orange brown, and light brown	
5m East	1	0 - 21	silt loam, small roots; rich dark brown (cap not frozen)	golf ball 14cm
	2	21 - 42	mixed zone—fill?—silt clay, clay and some sand, gravel. cobbles and one large chunk of lime?; OGM and brown	
	3	42 - 75	silty sand; dark gray grades to brown at base	

Test	Level	Depths (cm)	Soil Description	Artifacts
5m West	1	0 - 25	silt atop a cinder zone; dark brown above cinders	rusted nail n.c. coal
	2	25 - 37	compact silt, not mottled, appears natural	
5m South	1 2 3	0 - 16 16 - 27 27 - 42	rich brown silt or silt loam; cinder zone compact silt or silt loam; OGM	···· ····
8.9	1 2 3	0 - 12 12 - 30 30 - 42	silt; 10YR 3/3 cinder zone dense clay; brown w/gray	ceramic frag.
8.10	$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$	0 - 14 14 - 22 22 - 30 30 - 41	silt; 10YR 4/3 cinder zone silt & stones, one very large sandy silt clay; brown	···· ····
8.11	1 2 3	0 - 13 13 - 20 20 - 30	lightly sandy silt; 10YR 4/3 cinder zone, dense clay & large stones, densely packed; brown & orange b	 rown
8.12	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	0 - 24 24 - 33 33+	lightly sandy silt; 10YR 4/3 cinder zone, dense, a bit wet rock and clay zone; brown	· · · · · · ·
8.13	$\frac{1}{2}$	$0 - 17 \\ 17 - 31$	compact silt clay; brown clay, not dense; OGM	
8.14	$\frac{1}{2}$	$0 - 16 \\ 16 - 27$	compact dense silt clay; gray to gray brown dense clay; reddish brown	redware
8.15	$\frac{1}{2}$	0 - 12 12 - 23	compact silty clay; gray brown clay; dark brown	
8.16	1	0 • 11	compact, somewhat sandy silt or silt clay; 10YR 3/3 $$	chert flake small frag
	2	11 - 21	dense clay, some roots; brown w/gray	redware
Suppleme 5m East	1	0 - 19	ca. 18cm snow cover silt or silt clay, roots, quite stiff; very dark brown (top 8cm frozen)	
5m North	$\frac{2}{1}$	19+ 0 - 16	dense clay w/roots; dark brown clay silt, roots, very stiff; dark brown	
om north	2	16+	(top 7cm frozen) very dense clay; reddish brown	
5m West	$\frac{1}{2}$	0 - 14 14 - 30	silt clay, roots; brown (cap not frozen) dense clay; OGM & reddish brown	small flake
10m West	1	0 - 15	silt, many small roots; very dark brown	
	2	15+	(top 5cm frozen) dense clay; OGM	

Test	Level	Depths (cm)	Soil Description	Artifacts
8.17	1	0 - 15	silt or silt clay, some gritty spots, small tree roots; gray brown	
	2	15 - 26	dense clay, roots continue; OGM	
8.18	$\frac{1}{2}$	0 - 26 26 - 34	compact silt, roots; gray brown silty clay, roots continue; OGM	
Following 8.19	g tests wer 1	e on opposite side 0 - 28	of former stream channel lightly sandy silt loam, roots; 10YR 4/3	7 chert flakes 1 chert shatter
	2	28 - 42	silty sand w/some areas of clay; OGM	
			30cm+ snow cover, cap not frozen on any test	
5m North	n 1 2	$ \begin{array}{r} 0 - 27 \\ 27 - 40 \end{array} $	damp sticky silt, dense grass roots; light brown clay silt, not compact; dark OGM	
5m East	$\frac{1}{2}$	$ 0 - 27 \\ 27 - 37 $	silt or clay silt, grass roots; brown compact silt clay; dark OGM w/dark inclusions	
5m West	1	0 - 30	wet, sticky silt or clay silt, dense grass roots; brown flakes from ca. 25cm to subsoil interface	15 chert flakes
	2	30 - 57	silt to silt clay, not compact; OGM	
5m South	n 1	0 - 27	silt or clay silt, grass roots, a few small tree roots; brown	1 flake/shatter
	2	27 - 40	silt clay, very easy to dig; OGM	
8.20	$\frac{1}{2}$	0 - 26 26 - 41	clay loam?, many roots; gray brown silty clay; brown, quite uniform	
8.21	1	0 - 32	silt loam, some tree roots; gray brown	
	2	32 - 46	soft, damp and very easy to dig, soil is somewhat plastic so call it lightly sandy clayey silt or silt loam	
8.22	$\frac{1}{2}$	0 - 27 27 - 40	silty loam, grass roots, no stones; brown silty clay, no stones, no roots, not compacted; brown	
8.23	$\frac{1}{2}$	0 - 27 27 - 37	lightly sandy silt loam, grass roots; brown compact sandy silt loam; orange brown	
8.24	$\frac{1}{2}$	0 - 32 32 - 47	lightly sandy silt loam, some small roots; 10YR 4/3 compact sandy silt; OGM to orange brown	
	4	04 ⁻ 47	compact sandy snt, Octivi to orange brown	

Photograph 29 Looking westerly, area of STPs 8.1, 8.2, 8.4 (A02902.001323 and 1326) Historic foundation is in area of shrub on extreme left of photograph (A02902.001326)

Photograph 30 Looking easterly from STP 8.1 across fairway to area of STP 8.3. This is currently the eastern extent of site A02902.001323, Westwood 1 Pre-Contact.

Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York - 44 -

Photograph 31

Looking westerly towards area of STP 8.8

Location of a single chert flake find. Supplemental tests indicated disturbance and no additional prehistoric artifacts were recovered.

Photograph 32

Looking northerly towards area of STP 8.16.

Area was recorded as site A02902.001324, Westwood 2 but no additional work has been recommended due to sparse material and previous disturbance.

Photograph 33

Looking easterly at STP 8.19.

This tests produced multiple chert flakes and supplemental tests recovered additional material. Site recorded as Westwood 3 Pre-Contact, A02902.001325.

Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York - 45 -

Photograph 34: Area of Westwood Historic Site, Looking southeast.

Photograph 35

Looking southwesterly Area of Westwood Historic Site Cellar hole is marked by snowy area to right of shrub

Photograph 36

Detail, cellar hole area at Westwood Historic Site Looking northerly

Westwood Country Club, Club House and the Windows on the Green Restaurant

The primary structure located on the Westwood Country Club grounds is the club house and restaurant (*Windows on the Green*) complex. The core of the structure was built in 1928 and has been identified as "Tudor-inspired". Aerial photographs from 1927 indicated that a complex of structures had existed in this general locale. However, the buildings at that point do not appear to match well with later structure footprints. A much more detailed examination of the early aerials could possibly provide better information on the extent of former structures.

The 1951 aerial photographs show the core of the current club house/restaurant present. The additions to the main building and adjoining expansions have all been constructed since that time.

Because of the sprawling nature of the complex it is very difficult to take photographs that show both the overall appearance of the structure(s). The photographs that have been included (Photographs 38 and 39) are broad exterior shots that provide a general view of the complex. No interior photographs were taken and no detailed maps or plans were readily available.

A formal site number has not yet been requested for the structure. Additional input from NYS OPRHP is required to determine the extent of, and need for, any additional research required for this component of the property.

Photograph 38: View of Main Entrance of Club House/Restaurant This is the southern face of the building.

Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York - 48 -

Photograph 39: View of the Clubhouse/Restaurant complex. Looking south of east.

Phase 1b Cultural Resource Investigation: Westwood Country Club Town of Amherst, Erie County, New York - 49 -

Summary and Recommendations

One hundred shovel tests were initially excavated in seven of the eight areas selected for testing. One locale, Test Area 6, was eliminated from testing due to the extent of previous disturbance and the presence of concrete pads which were determined to be supports for a former water tower. As had been somewhat expected, the majority of tests were negative for archaeological deposits or any indications of activity prior to the construction of the country club/golf course. Nevertheless, eight tests were positive for prehistoric artifacts (chert debitage) and one test was positive for historic artifacts which were generally classified as domestic items.

Table 10: Summary of Shovel Test Coverage Selected Areas Within the Westwood Country Club				
Area	Tests Excavated	Positive Tests Prehistoric Items	Positive Tests Historic Items	Supplemental Tests
Test Area 1	28	0	0	0
Test Area 2	5	0	0	0
Test Area 3	17	0	0	0
Test Area 4	13	1	0	4
Test Area 5	5	0	0	0
Test Area 6	0	0	0	0
Test Area 7	8	0	0	0
Test Area 8	24	7	1	12
Totals	100	8	1	16

Subsurface testing was conducted in seven of eight areas within the Westwood Country Club and a total of one hundred tests were excavated to complete the basic coverage. The initial testing was conducted between November 20 and December 5, 2013 with several breaks due to poor weather conditions. Supplemental testing was conducted on December 18 and 19. Conditions were far from ideal since there was a general snow cover across the project area that ranged from ca. 7 to 14 inches. Three areas (Area 1, Area 4, and Area 8) contained shovel tests that were positive for prehistoric artifacts (chert debitage).

Test Area 1

Test Area 1 was eliminated from further testing after cleaning the material collected there. The item originally collected as a chert flake had been incorrectly classified.

Test Area 4

One test excavated in this area (STP 4.3) produced five chert flakes and a single shatterlike piece from level 1. Five supplemental tests were excavated at this find spot (5N, 5E, 5W, 5S, 10S). Two of the tests produced additional chert items: one was a chunky piece and one was a small flake. There were also pieces of modern material located in some of these tests as well as in other tests across Test Area 4.

Generally, this area, like a very large portion of the Westwood property, was poorly drained. Most of the tests were noted to be wet and water usually filled the excavations. Virtually all low spots contained pooled water. The amount of water covering the surface increased as one moved to the west. The level of disturbance in this Test Area was also noticeably higher than elsewhere as evidenced by fragmented drain tiles as well as some intact drain tiles uncovered by shovel tests.

Because of the drainage issues and their associated disturbance, other obvious areas of disturbance and soil displacement, the somewhat deeper Level 1 soils, and the mix of prehistoric and modern artifacts, this locale was not recommended for assignment of a formal site number. Test Area 8

This was an irregular area that flanked an extinct meander of Ellicott Creek. It was considered to be the most sensitive test area within the project area and the most likely to produce indications of extant prehistoric sites. That assumption appeared to be borne out by field testing. Most of the soils within this area were also markedly different from other test areas with respect to drainage. Prehistoric artifacts were recovered from four of the locations during the initial phase of testing.

1) Three shovel tests positive for multiple chert artifacts were in this locale (8.1, 8.2, 8.3) and it generally appeared to be one of the best locations along the former stream channel for any previous occupation. Two positive tests (8.1, 8.2) were located west of a fairway and were spaced 15m apart. A third positive test (8.3) was located on the east side of the noted fairway and was west of a small utility structure. The separation between positive tests due to the presence of the fairway was at ca. 40m. No supplemental testing was done across this area because of the spread between the positive tests and the expectation that Phase 2 level testing will be required to properly evaluate the locality. It was recommended that this area be formally identified as a prehistoric/Pre-Contact archaeological site. It has been assigned OPRHP site number A02902.001323, and is designated as the Westwood Pre-Contact 1 site.

- 2) Approximately 40m west of the first noted area there were multiple tests with historic artifacts and one (8.4) also contained a single chert flake. The flake may indicate that the Westwood Pre-Contact 1 site extends this far west. Regardless of whether or not that it is the case the other artifacts recovered in test 8.4 and 8.5 have been tentatively identified as associated with the historic foundation to the southwest. The material has not been precisely dated but seems to cover a time range that may extend from the late-19th through early-20th centuries. Phase 2 investigations have been recommended for this location because of the nature of the site, its possible extent, and the need for larger test excavation units. The site has been recorded as Westwood Historic and was assigned OPRHP site number A02902.001326.
- 3) A somewhat problematic chert flake was recovered shovel test 8.8. Four supplemental tests were excavated at this find spot and were arrayed at 5m intervals in the cardinal directions. None of these tests produced any additional prehistoric material but did show previous disturbance in the form of cinder deposits and some mixed/mottled soil. No site number was recommended for this location and no additional investigation has been recommended.
- 4) Initial testing recovered a small chert flake fragment from a shovel test 8.16. The topographic position at this location was similar to that noted at the Westwood Pre-Contact 1 site, atop a significantly elevated position adjacent to the former creek channel. However, landscaping activity did seem to have occurred and Level 1 soil was noticeably more shallow than elsewhere. Four supplemental tests were excavated (5N, 5E, 5W, 10W) and one produced another very small chert flake. The tests did show that the shallow Level 1 soil continued across this area. It was recommended that the location be identified as an archaeological site but no additional investigation has been recommended due to the paucity of artifacts and obvious disturbance due to landscaping. The site has been assigned OPRHP site number A02902.001324 and has been recorded as the Westwood Pre-Contact 2 site.
- 5) This location was the first spot tested on the lower, northern or eastern, side of the extinct creek meander. Initial shovel testing recovered 7 chert flakes and a rather large piece of chert (that might be classified as a flake or shatter) from Level 1 soil. Four supplemental tests were excavated at this location, 5m distant and in the cardinal directions. The supplemental test to the west produced 15 chert flakes and the test to the south produced a single chert flake. The

flakes generally appeared to be in the lower part of Level 1 (ca. 25cm+) and at or just above the L1/L2 interface. It was recommended that the site be formally recorded and it was assigned OPRHP site number A02902.001325. It is recorded as the Westwood Pre-Contact 3 site. This location has been recommended for Phase 2 testing. However, the site may be within or on the edge of an area which may not be scheduled for future development. If it is outside the proposed development zone it should probably still be considered for additional investigation.

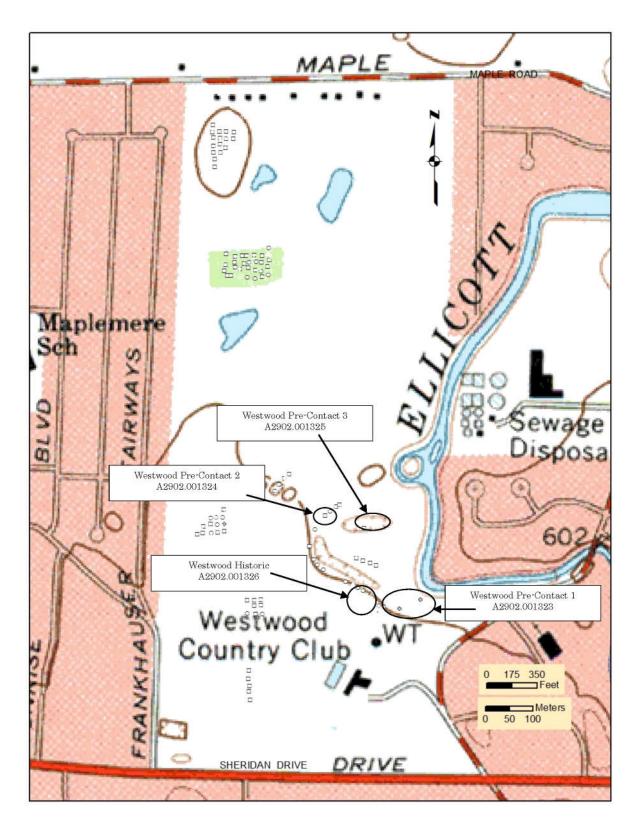


Figure 13: Location of Archaeological Sites Recorded by Phase 1B Survey USGS 7.5' Buffalo NE Quadrangle. Note the circle and "WT" which indicate a water tower in the area that had been designated Test Area 6.

Andrew M. Cuomo Governor

> Rose Harvey Commissioner

New York State Office of Parks, Recreation and Historic Preservation

Division for Historic Preservation P.O. Box 189, Waterford, New York 12188-0189 518-237-8643

June 10, 2014

Sean Hopkins Hopkins & Sorgi 5500 Main Street, Suite 100 Williamsville, NY 14221 (via email only)

Re: SEQRA

Westwood County Club Maple Rd Town of Amherst, Erie County 12PR04942

Dear Mr. Hopkins:

Thank you for requesting the comments of the Office of Parks, Recreation and Historic Preservation (OPRHP). We have reviewed the *Phase IB Cultural Resources Investigation Report*, prepared by Robert Dean and dated December 2013, in accordance with the New York State Historic Preservation Act of 1980 (Section 14.09 of the New York Parks, Recreation and Historic Preservation Law). These comments are those of the Division for Historic Preservation and relate only to Historic/Cultural resources.

Based upon this review, the OPRHP concurs with the recommendation for a Phase II Site Evaluation or avoidance of the Westwood Pre-Contact 1 site (A02902.001323), the Westwood Historic site (A02902.001326), and the Westwood Pre-Contact 3 site (A02902.001325). We have no further archaeology concerns with the Westwood Pre-Contact 2 site (02902.001324) or for any other portions of the current project area. If avoidance is chosen, the OPRHP requests an avoidance plan.

Please refer to the attachment for building/structure comments. I can be reached at ext. 3280 with any questions you may have.

Sincerely,

Many Herter

Nancy Herter Historic Preservation Program Analyst, Archaeology

cc. Robert Dean (via email only)

REQUEST FOR ADDITIONAL INFORMATION BUILDINGS/STRUCTURES/DISTRICTS

PROJECT NUMBER 12PR04942

(Westwood County Club/Maple Rd/T/AMHERST)

In order for us to complete our evaluation of the historic signification of all buildings/structures/districts within or adjacent to your project area we will need the following additional information

- Full project description showing area of potential effect.
- Clear, original photographs of buildings/structures 50 years or older.

within or immediately adjacent to the project area ****** key all photographs to a site map

- Clear, original photographs of the surroundings looking out from the project site in all direction, keyed to a site map.
- Date of construction.
- Brief history of property. golf course
- Clear, original photographs of the following:
- golf course typical and any outstanding design features
- Other:

History, contruction date, name of designer of golf course.

Please provide only the additional information checked above. If you have any question concerning this request for additional information, please call Robert T. Englert at 518-237-8643. ext 3268

PLEASE BE SURE TO REFER TO THE PROJECT NUMBER NOTED ABOVE WHEN RESPONDING TO THIS REQUEST

http://sphinx/PR/PMReadForm.asp?iPrn=1&iFId=22707&sSFile=form3.htm

6/10/2014